Muutke küpsiste eelistusi

Fundamentals of Multimedia Third Edition 2021 [Pehme köide]

  • Formaat: Paperback / softback, 824 pages, kõrgus x laius: 235x155 mm, kaal: 1282 g, 113 Illustrations, color; 277 Illustrations, black and white; XXV, 824 p. 390 illus., 113 illus. in color., 1 Paperback / softback
  • Sari: Texts in Computer Science
  • Ilmumisaeg: 17-Feb-2022
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 303062126X
  • ISBN-13: 9783030621261
  • Pehme köide
  • Hind: 57,96 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 68,19 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 824 pages, kõrgus x laius: 235x155 mm, kaal: 1282 g, 113 Illustrations, color; 277 Illustrations, black and white; XXV, 824 p. 390 illus., 113 illus. in color., 1 Paperback / softback
  • Sari: Texts in Computer Science
  • Ilmumisaeg: 17-Feb-2022
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 303062126X
  • ISBN-13: 9783030621261
PREVIOUS EDITION
This textbook introduces the “Fundamentals of Multimedia”, addressing real issues commonly faced in the workplace. The essential concepts are explained in a practical way to enable students to apply their existing skills to address problems in multimedia. Fully revised and updated, this new edition now includes coverage of such topics as 3D TV, social networks, high-efficiency video compression and conferencing, wireless and mobile networks, and their attendant technologies. 

Features: presents an overview of the key concepts in multimedia, including color science; reviews lossless and lossy compression methods for image, video and audio data; examines the demands placed by multimedia communications on wired and wireless networks; discusses the impact of social media and cloud computing on information sharing and on multimedia content search and retrieval; includes study exercises at the end of each chapter; provides supplementary resources for both students and instructors at an associated website.
Part I Introduction and Multimedia Data Representations
1 Introduction to Multimedia
3(24)
1.1 What is Multimedia?
3(2)
1.1.1 Components of Multimedia
4(1)
1.2 Multimedia: Past and Present
5(11)
1.2.1 Early History of Multimedia
5(4)
1.2.2 Hypermedia, WWW, and Internet
9(4)
1.2.3 Multimedia in the New Millennium
13(3)
1.3 Multimedia Software Tools: A Quick Scan
16(6)
1.3.1 Music Sequencing and Notation
17(1)
1.3.2 Digital Audio
17(1)
1.3.3 Graphics and Image Editing
18(1)
1.3.4 Video Editing
18(1)
1.3.5 Animation
19(1)
1.3.6 Multimedia Authoring
20(1)
1.3.7 Multimedia Broadcasting
21(1)
1.4 The Future of Multimedia
22(2)
1.5 Exercises
24(3)
References
25(2)
2 A Taste of Multimedia
27(30)
2.1 Multimedia Tasks and Concerns
27(1)
2.2 Multimedia Presentation
28(7)
2.3 Data Compression
35(3)
2.4 Multimedia Production
38(1)
2.5 Multimedia Sharing and Distribution
39(2)
2.6 Some Useful Editing and Authoring Tools
41(10)
2.6.1 Adobe Premiere
42(3)
2.6.2 HTML5 Canvas
45(1)
2.6.3 Adobe Director
46(2)
2.6.4 Adobe XD
48(3)
2.7 Exercises
51(6)
References
55(2)
3 Graphics and Image Data Representations
57(26)
3.1 Graphics and Image Data Types
57(12)
3.1.1 1-Bit Images
57(1)
3.1.2 8-Bit Gray-Level Images
58(4)
3.1.3 Image Data Types
62(1)
3.1.4 24-Bit Color Images
62(1)
3.1.5 Higher Bit-Depth Images
62(1)
3.1.6 8-Bit Color Images
63(2)
3.1.7 Color Lookup Tables (LUTs)
65(4)
3.2 Popular File Formats
69(10)
3.2.1 GIF
69(4)
3.2.2 IPEG
73(2)
3.2.3 PNG
75(1)
3.2.4 TIFF
75(1)
3.2.5 Windows BMP
75(1)
3.2.6 Windows WMF
76(1)
3.2.7 Netpbm Format
76(1)
3.2.8 EXIF
76(1)
3.2.9 HEIF
76(1)
3.2.10 PS and PDF
77(1)
3.2.11 PTM
78(1)
3.3 Exercises
79(4)
References
81(2)
4 Color in Image and Video
83(36)
4.1 Color Science
83(19)
4.1.1 Light and Spectra
83(2)
4.1.2 Human Vision
85(1)
4.1.3 Spectral Sensitivity of the Eye
85(1)
4.1.4 Image Formation
86(2)
4.1.5 Camera Systems
88(1)
4.1.6 Gamma Correction
88(3)
4.1.7 Color-Matching Functions
91(1)
4.1.8 CIE Chromaticity Diagram
92(4)
4.1.9 Color Monitor Specifications
96(1)
4.1.10 Out-of-Gamut Colors
96(1)
4.1.11 White Point Correction
97(2)
4.1.12 XYZ to RGB Transform
99(1)
4.1.13 Transform with Gamma Correction
99(1)
4.1.14 L*a*b* (CIELAB) Color Model
100(2)
4.1.15 More Color Coordinate Schemes
102(1)
4.1.16 Munsell Color Naming System
102(1)
4.2 Color Models in Images
102(6)
4.2.1 RGB Color Model for Displays
102(1)
4.2.2 Multi-sensor Cameras
103(1)
4.2.3 Camera-Dependent Color
103(2)
4.2.4 Subtractive Color: CMY Color Model
105(1)
4.2.5 Transformation from RGB to CMY
105(1)
4.2.6 Undercolor Removal: CMYK System
106(1)
4.2.7 Printer Gamuts
106(1)
4.2.8 Multi-ink Printers
107(1)
4.3 Color Models in Video
108(5)
4.3.1 Video Color Transforms
108(1)
4.3.2 YUV Color Model
109(2)
4.3.3 YIQ Color Model
111(1)
4.3.4 YCbCr Color Model
112(1)
4.4 Exercises
113(6)
References
117(2)
5 Fundamental Concepts in Video
119(32)
5.1 Analog Video
119(7)
5.1.1 NTSC Video
122(3)
5.1.2 PAL Video
125(1)
5.1.3 SECAM Video
125(1)
5.2 Digital Video
126(5)
5.2.1 Chroma Subsampling
126(2)
5.2.2 CCIR and ITU-R Standards for Digital Video
128(1)
5.2.3 High Definition TV (HDTV)
129(1)
5.2.4 Ultra-High-Definition TV (UHDTV)
130(1)
5.3 Video Display Interfaces
131(4)
5.3.1 Analog Display Interfaces
131(2)
5.3.2 Digital Display Interfaces
133(2)
5.4 360° Video
135(3)
5.4.1 Equirectangular Projection (ERP)
136(1)
5.4.2 Other Projections
137(1)
5.5 3D Video and TV
138(7)
5.5.1 Cues for 3D Percept
138(1)
5.5.2 3D Camera Models
139(1)
5.5.3 3D Movie and TV Based on Stereo Vision
140(1)
5.5.4 The Vergence-Accommodation Conflict
141(1)
5.5.5 Autostereoscopic (Glasses-Free) Display Devices
142(1)
5.5.6 Disparity Manipulation in 3D Content Creation
143(2)
5.6 Video Quality Assessment (VQA)
145(1)
5.6.1 Objective Assessment
145(1)
5.6.2 Subjective Assessment
146(1)
5.6.3 Other VQA Metrics
146(1)
5.7 Exercises
146(5)
References
148(3)
6 Basics of Digital Audio
151(48)
6.1 Digitization of Sound
151(16)
6.1.1 What Is Sound?
151(1)
6.1.2 Digitization
152(3)
6.1.3 Nyquist Theorem
155(1)
6.1.4 Signal-to-Noise Ratio (SNR)
156(2)
6.1.5 Signal-to-Quantization-Noise Ratio (SQNR)
158(1)
6.1.6 Linear and Nonlinear Quantization
159(5)
6.1.7 Audio Filtering
164(1)
6.1.8 Audio Quality versus Data Rate
164(1)
6.1.9 Synthetic Sounds
165(2)
6.2 MIDI: Musical Instrument Digital Interface
167(11)
6.2.1 MIDI Overview
167(4)
6.2.2 Hardware Aspects of MIDI
171(2)
6.2.3 Structure of MIDI Messages
173(4)
6.2.4 MIDI-to-WAV Conversion
177(1)
6.2.5 General MIDI
177(1)
6.2.6 MIDI 2.0
177(1)
6.3 Quantization and Transmission of Audio
178(13)
6.3.1 Coding of Audio
178(1)
6.3.2 Pulse Code Modulation
178(2)
6.3.3 Differential Coding of Audio
180(2)
6.3.4 Lossless Predictive Coding
182(4)
6.3.5 DPCM
186(3)
6.3.6 DM
189(1)
6.3.7 ADPCM
190(1)
6.4 Exercises
191(8)
References
195(4)
Part II Multimedia Data Compression
7 Lossless Compression Algorithms
199(42)
7.1 Introduction
199(1)
7.2 Basics of Information Theory
200(3)
7.3 Run-Length Coding
203(1)
7.4 Variable-Length Coding (VLC)
203(12)
7.4.1 Shannon-Fano Algorithm
204(1)
7.4.2 Huffman Coding
205(5)
7.4.3 Adaptive Huffman Coding
210(5)
7.5 Dictionary-Based Coding
215(5)
7.6 Arithmetic Coding
220(13)
7.6.1 Basic Arithmetic Coding Algorithm
221(3)
7.6.2 Scaling and Incremental Coding
224(5)
7.6.3 Integer Implementation
229(1)
7.6.4 Binary Arithmetic Coding
229(1)
7.6.5 Adaptive Arithmetic Coding
230(3)
7.7 Lossless Image Compression
233(3)
7.7.1 Differential Coding of Images
233(1)
7.7.2 Lossless JPEG
234(2)
7.8 Exercises
236(5)
References
239(2)
8 Lossy Compression Algorithms
241(60)
8.1 Introduction
241(1)
8.2 Distortion Measures
242(1)
8.3 The Rate-Distortion Theory
243(1)
8.4 Quantization
244(6)
8.4.1 Uniform Scalar Quantization
244(3)
8.4.2 Nonuniform Scalar Quantization
247(2)
8.4.3 Vector Quantization
249(1)
8.5 Transform Coding
250(19)
8.5.1 Discrete Cosine Transform (DCT)
251(15)
8.5.2 Karhunen-Loeve Transform*
266(3)
8.6 Wavelet-Based Coding
269(19)
8.6.1 Introduction
269(5)
8.6.2 Continuous Wavelet Transform*
274(3)
8.6.3 Discrete Wavelet Transform*
277(11)
8.7 Wavelet Packets
288(1)
8.8 Embedded Zerotree of Wavelet Coefficients
289(7)
8.8.1 The Zerotree Data Structure
290(2)
8.8.2 Successive Approximation Quantization
292(1)
8.8.3 EZW Example
293(3)
8.9 Set Partitioning in Hierarchical Trees (SPIHT)
296(1)
8.10 Exercises
296(5)
References
300(1)
9 Image Compression Standards
301(40)
9.1 The JPEG Standard
301(14)
9.1.1 Main Steps in JPEG Image Compression
302(9)
9.1.2 JPEG Modes
311(3)
9.1.3 A Glance at the JPEG Bitstream
314(1)
9.2 The JPEG 2000 Standard
315(12)
9.2.1 Main Steps of JPEG 2000 Image Compression*
316(9)
9.2.2 Adapting EBCOT to JPEG 2000
325(1)
9.2.3 Region-of-Interest Coding
325(1)
9.2.4 Comparison of JPEG and JPEG 2000 Performance
326(1)
9.3 The JPEG-LS Standard
327(5)
9.3.1 Prediction
329(2)
9.3.2 Context Determination
331(1)
9.3.3 Residual Coding
331(1)
9.3.4 Near-Lossless Mode
332(1)
9.4 Bi-Level Image Compression Standards
332(4)
9.4.1 The JBIG Standard
332(1)
9.4.2 The JBIG2 Standard
333(3)
9.5 Exercises
336(5)
References
338(3)
10 Basic Video Compression Techniques
341(24)
10.1 Introduction to Video Compression
341(1)
10.2 Video Compression Based on Motion Compensation
342(1)
10.3 Search for Motion Vectors
343(6)
10.3.1 Sequential Search
344(1)
10.3.2 2D Logarithmic Search
345(2)
10.3.3 Hierarchical Search
347(2)
10.4 H.261
349(8)
10.4.1 Intra-Frame (I-Frame) Coding
351(1)
10.4.2 Inter-Frame (P-Frame) Predictive Coding
351(1)
10.4.3 Quantization in H.261
352(1)
10.4.4 H.261 Encoder and Decoder
353(2)
10.4.5 A Glance at the H.261 Video Bitstream Syntax
355(2)
10.5 H.263
357(5)
10.5.1 Motion Compensation in H.263
357(1)
10.5.2 Optional H.263 Coding Modes
358(2)
10.5.3 H.263+ and H.263++
360(2)
10.6 Exercises
362(3)
References
364(1)
11 MPEG Video Coding: MPEG-1, 2, 4, and 7
365(58)
11.1 Overview
365(1)
11.2 MPEG-1
366(6)
11.2.1 Motion Compensation in MPEG-1
366(2)
11.2.2 Other Major Differences from H.261
368(3)
11.2.3 MPEG-1 Video Bitstream
371(1)
11.3 MPEG-2
372(13)
11.3.1 Supporting Interlaced Video
374(3)
11.3.2 MPEG-2 Scalabilities
377(6)
11.3.3 Other Major Differences from MPEG-1
383(2)
11.4 MPEG-4
385(25)
11.4.1 Overview of MPEG-4
385(3)
11.4.2 Video Object-Based Coding in MPEG-4
388(13)
11.4.3 Synthetic Object Coding in MPEG-4
401(8)
11.4.4 MPEG-4 Parts, Profiles, and Levels
409(1)
11.5 MPEG-7
410(7)
11.5.1 Descriptor (D)
412(2)
11.5.2 Description Scheme (DS)
414(3)
11.5.3 Description Definition Language (DDL)
417(1)
11.6 Exercises
417(6)
References
420(3)
12 Modern Video Coding Standards: H.264, H.265, and H.266
423(56)
12.1 Overview
423(1)
12.2 H.264
423(25)
12.2.1 Motion Compensation
425(3)
12.2.2 Integer Transform
428(2)
12.2.3 Quantization and Scaling
430(2)
12.2.4 Examples of H.264 Integer Transform and Quantization
432(3)
12.2.5 Intra-Coding
435(1)
12.2.6 In-loop Deblocking Filtering
436(1)
12.2.7 Entropy Coding
437(3)
12.2.8 Context-Adaptive Variable Length Coding (CAVLC)
440(2)
12.2.9 Context-Adaptive Binary Arithmetic Coding (CAB AC)
442(2)
12.2.10 H.264 Profiles
444(2)
12.2.11 H.264 Scalable Video Coding (SVC)
446(1)
12.2.12 H.264 Multiview Video Coding (MVC)
447(1)
12.3 H.265
448(14)
12.3.1 Motion Compensation
449(4)
12.3.2 Integer Transform
453(1)
12.3.3 Quantization and Scaling
454(1)
12.3.4 Intra-Coding
455(1)
12.3.5 Discrete Sine Transform (DST)
455(2)
12.3.6 In-Loop Filtering
457(1)
12.3.7 Entropy Coding
458(1)
12.3.8 Special Coding Modes
458(1)
12.3.9 H.265 Profiles
459(1)
12.3.10 H.265 Extensions
460(2)
12.4 H.266
462(12)
12.4.1 Motion Compensation
463(2)
12.4.2 Adaptive Multiple Transforms
465(1)
12.4.3 Non-separable Secondary Transform
465(3)
12.4.4 In-Loop Filtering
468(1)
12.4.5 Tools for High Dynamic Range (HDR) Video
469(2)
12.4.6 Tools for 360° Video
471(2)
12.4.7 H.266 Performance Report
473(1)
12.5 Exercises
474(5)
References
477(2)
13 Basic Audio Compression Techniques
479(26)
13.1 ADPCM in Speech Coding
480(3)
13.1.1 ADPCM
480(1)
13.1.2 G.726 ADPCM, G.727-9
480(3)
13.2 Vocoders
483(15)
13.2.1 Phase Insensitivity
483(1)
13.2.2 Channel Vocoder
484(1)
13.2.3 Formant Vocoder
485(1)
13.2.4 Linear Predictive Coding
486(3)
13.2.5 CELP
489(6)
13.2.6 Hybrid Excitation Vocoders*
495(3)
13.3 Open Source Speech Codecs*
498(4)
13.3.1 Speex
499(1)
13.3.2 Opus
500(2)
13.4 Exercises
502(3)
References
504(1)
14 MPEG Audio Compression
505(30)
14.1 Psychoacoustics
506(9)
14.1.1 Equal-Loudness Relations
506(2)
14.1.2 Frequency Masking
508(5)
14.1.3 Temporal Masking
513(2)
14.2 MPEG Audio
515(11)
14.2.1 MPEG Layers
515(1)
14.2.2 MPEG Audio Strategy
516(1)
14.2.3 MPEG Audio Compression Algorithm
517(6)
14.2.4 MPEG-2 AAC (Advanced Audio Coding)
523(2)
14.2.5 MPEG-4 Audio
525(1)
14.3 Other Audio Codecs
526(2)
14.3.1 Ogg Vorbis
526(2)
14.4 MPEG-7 Audio and Beyond
528(1)
14.5 Further Exploration
529(1)
14.6 Exercises
529(6)
References
530(5)
Part III Multimedia Communications and Networking
15 Network Services and Protocols for Multimedia Communications
535(48)
15.1 Protocol Layers of Computer Communication Networks
535(1)
15.2 Local Area Network (LAN) and Access Networks
536(7)
15.2.1 LAN Standards
538(1)
15.2.2 Ethernet Technology
538(2)
15.2.3 Access Network Technologies
540(3)
15.3 Internet Technologies and Protocols
543(9)
15.3.1 Network Layer: IP
543(2)
15.3.2 Transport Layer: TCP and UDP
545(5)
15.3.3 Network Address Translation (NAT) and Firewall
550(2)
15.4 Multicast Extension
552(3)
15.4.1 Router-Based Architectures: IP Multicast
552(2)
15.4.2 Non Router-Based Multicast Architectures
554(1)
15.5 Quality of Service (QoS) and Quality of Experience (QoE)
555(12)
15.5.1 QoS and QoE for Multimedia Communications
556(4)
15.5.2 Internet QoS Architecture: IntServ and DiffServ
560(4)
15.5.3 Network Softwarization and Virtualization: SDN and NVF
564(1)
15.5.4 Rate Control and Buffer Management
565(2)
15.6 Protocols for Multimedia Transmission and Interaction
567(6)
15.6.1 HyperText Transfer Protocol (HTTP)
567(2)
15.6.2 Real-Time Transport Protocol (RTP)
569(2)
15.6.3 RTP Control Protocol (RTCP)
571(1)
15.6.4 Real-Time Streaming Protocol (RTSP)
571(2)
15.7 Case Study: Internet Telephony
573(5)
15.7.1 Signaling Protocols: H.323 and Session Initiation Protocol (SIP)
574(4)
15.8 Further Exploration
578(1)
15.9 Exercises
578(5)
References
580(3)
16 Internet Multimedia Content Distribution
583(44)
16.1 Proxy Caching
584(8)
16.1.1 Sliding-Interval Caching
585(2)
16.1.2 Prefix Caching and Segment Caching
587(1)
16.1.3 Rate-Split Caching and Work-Ahead Smoothing
588(4)
16.2 Content Distribution Networks (CDNs)
592(4)
16.2.1 Request Routing and Redirection
592(2)
16.2.2 Representative: Akamai Streaming CDN
594(2)
16.3 Broadcast/Multicast Video Distribution
596(9)
16.3.1 Smart TV and Set-Top Box (STB)
596(2)
16.3.2 Scalable Broadcast/Multicast VoD
598(4)
16.3.3 Multi-rate Broadcast/Multicast for Heterogeneous Users
602(3)
16.4 Application-Layer Multicast and Peer-to-Peer Streaming
605(8)
16.4.1 Application-Layer Multicast Tree
605(1)
16.4.2 Representative: End-System Multicast (ESM)
606(2)
16.4.3 Peer-to-Peer Mesh Overlay
608(2)
16.4.4 Representative: CoolStreaming
610(3)
16.5 Web-Based Media Streaming
613(8)
16.5.1 Dynamic Adaptive Streaming over HTTP (DASH)
615(2)
16.5.2 Common Media Application Format (CMAF)
617(2)
16.5.3 Web Real-Time Communication (WebRTC)
619(2)
16.6 Exercises
621(6)
References
624(3)
17 Multimedia Over Wireless and Mobile Networks
627(44)
17.1 Characteristics of Wireless Channels
627(3)
17.1.1 Path Loss
627(1)
17.1.2 Multipath Fading
628(2)
17.2 Wireless Networking Technologies
630(14)
17.2.1 Cellular Wireless Mobile Networks: 1G-5G
631(9)
17.2.2 Wireless Local Area Networks (WLANs)
640(3)
17.2.3 Bluetooth and Short-Range Technologies
643(1)
17.3 Multimedia Over Wireless Channels
644(16)
17.3.1 Error Detection
645(3)
17.3.2 Error Correction
648(4)
17.3.3 Error-Resilient Coding
652(5)
17.3.4 Error Concealment
657(3)
17.4 Mobility Management
660(5)
17.4.1 Network Layer Mobile IP
661(2)
17.4.2 Link-Layer Handoff Management
663(2)
17.5 Further Exploration
665(1)
17.6 Exercises
666(5)
References
667(4)
18 Cloud Computing for Multimedia Services
671(36)
18.1 Cloud Computing Overview
672(9)
18.1.1 Representative Storage Service: Amazon S3
676(2)
18.1.2 Representative Computation Service: Amazon EC2
678(3)
18.2 Multimedia Cloud Computing
681(1)
18.3 Multimedia Content Sharing over Cloud
681(6)
18.3.1 Impact of Globalization
684(1)
18.3.2 Case Study: Netflix
685(2)
18.4 Multimedia Computation Offloading
687(3)
18.4.1 Requirements for Computation Offloading
688(1)
18.4.2 Service Partitioning for Video Processing
689(1)
18.5 Interactive Cloud Gaming
690(6)
18.5.1 Workload and Delay in Cloud Gaming
691(3)
18.5.2 Implementation and Deployment
694(2)
18.6 Edge Computing and Serverless Computing for Multimedia
696(4)
18.6.1 Mobile Edge Computing
696(2)
18.6.2 Serverless Computing for Video Processing
698(2)
18.7 Further Exploration
700(1)
18.8 Exercises
700(7)
References
702(5)
Part IV Human-Centric Interactive Multimedia
19 Online Social Media Sharing
707(30)
19.1 Representatives of Social Media Services
708(2)
19.1.1 User-Generated Content (UGC)
708(1)
19.1.2 Online Social Networking (OSN)
709(1)
19.2 User-Generated Media Content Sharing
710(12)
19.2.1 YouTube Video Format and Meta-Data
710(1)
19.2.2 Characteristics of YouTube Video
711(3)
19.2.3 Small-World in YouTube Videos
714(2)
19.2.4 YouTube from a Partner's View
716(3)
19.2.5 Crowdsourced Interactive Livecast
719(3)
19.3 Media Propagation in Online Social Networks
722(5)
19.3.1 Sharing Patterns of Individual Users
723(1)
19.3.2 Video Propagation Structure and Model
724(3)
19.3.3 Video Watching and Sharing Behaviors
727(1)
19.4 Mobile Video Clip Sharing
727(4)
19.4.1 Mobile Interface Characteristics
728(1)
19.4.2 Video Clip Popularity
729(1)
19.4.3 Lifespan and Propagation
729(2)
19.5 Further Exploration
731(1)
19.6 Exercises
731(6)
References
733(4)
20 Augmented Reality and Virtual Reality
737(26)
20.1 Defining Augmented Reality and Virtual Reality
737(3)
20.2 Workflow of Augmented Reality
740(2)
20.2.1 Sensory Data Collection
740(1)
20.2.2 Localization and Alignment
741(1)
20.2.3 World Generation and Emission
741(1)
20.3 Early Foundational Systems and Applications
742(3)
20.4 Enabling Hardware and Infrastmcture
745(4)
20.4.1 Graphics Processing Unit (GPU)
745(2)
20.4.2 Global Positioning System (GPS)
747(1)
20.4.3 Networking for Multiple Users
748(1)
20.5 Modem Augmented Reality Systems and Applications
749(3)
20.6 Limitations and Challenges
752(5)
20.6.1 Color Perception
753(1)
20.6.2 Depth Perception
754(1)
20.6.3 Localization
755(1)
20.6.4 Information Presentation
756(1)
20.6.5 Social Acceptance
756(1)
20.7 Further Exploration
757(1)
20.8 Exercises
757(6)
References
758(5)
21 Content-Based Retrieval in Digital Libraries
763(48)
21.1 How Should We Retrieve Images?
763(3)
21.2 Synopsis of Early CBIR Systems
766(2)
21.3 C-BIRD--An Early Experiment
768(9)
21.3.1 Color Histogram
768(2)
21.3.2 Color Density and Color Layout
770(1)
21.3.3 Texture Layout
770(3)
21.3.4 Search by Illumination Invariance
773(1)
21.3.5 Search-by-Object Model
774(3)
21.4 Quantifying Search Results
777(3)
21.5 Key Technologies in Current CBIR Systems
780(9)
21.5.1 Robust Image Features and Their Representation
780(2)
21.5.2 User Feedback and Collaboration
782(1)
21.5.3 Other Post-processing Techniques
783(1)
21.5.4 Visual Concept Search
784(1)
21.5.5 Feature Learning with Convolutional Neural Networks
785(3)
21.5.6 Database Indexing
788(1)
21.6 Querying on Videos
789(3)
21.7 Querying on Videos Based on Human Activity--A Case Study
792(3)
21.7.1 Modeling Human Activity Structures
793(2)
21.7.2 Experimental Results
795(1)
21.8 Quality-A ware Mobile Visual Search
795(5)
21.8.1 Quality-Aware Method
798(1)
21.8.2 Experimental Results
799(1)
21.9 Deep Incremental Hashing Network*
800(4)
21.9.1 Problem Definition
801(1)
21.9.2 Descriptions of DIHN
801(3)
21.9.3 Experimental Results
804(1)
21.10 Exercises
804(7)
References
806(5)
Index 811
Drs. Ze-Nian Li, Mark S. Drew, and Jiangchuan Liu are Professors in the School of Computing Science at Simon Fraser University, Vancouver, BC, Canada.