|
|
1 | (18) |
|
|
1 | (4) |
|
1.1.1 Special Nuclear Units |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
5 | (10) |
|
1.2.1 The Fundamental Constituents of Ordinary Matter |
|
|
6 | (2) |
|
1.2.2 Dark Matter and Energy |
|
|
8 | (1) |
|
1.2.3 Atomic and Nuclear Nomenclature |
|
|
9 | (1) |
|
1.2.4 Relative Atomic Masses |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
12 | (1) |
|
1.2.7 Atom and Isotope Number Density |
|
|
12 | (2) |
|
|
14 | (1) |
|
1.2.9 Atomic and Isotopic Abundances |
|
|
14 | (1) |
|
1.2.10 Nuclear Dimensions |
|
|
14 | (1) |
|
1.3 Chart of the Nuclides |
|
|
15 | (4) |
|
1.3.1 Other Sources of Atomic/Nuclear Information |
|
|
15 | (4) |
|
2 Modern Physics Concepts |
|
|
19 | (35) |
|
2.1 The Special Theory of Relativity |
|
|
19 | (7) |
|
2.1.1 Principle of Relativity |
|
|
21 | (1) |
|
2.1.2 Results of the Special Theory of Relativity |
|
|
22 | (4) |
|
2.2 Radiation as Waves and Particles |
|
|
26 | (7) |
|
2.2.1 The Photoelectric Effect |
|
|
26 | (2) |
|
|
28 | (2) |
|
2.2.3 Electromagnetic Radiation: Wave-Particle Duality |
|
|
30 | (1) |
|
2.2.4 Electron Scattering |
|
|
31 | (1) |
|
2.2.5 Wave-Particle Duality |
|
|
32 | (1) |
|
|
33 | (5) |
|
2.3.1 Schrodinger's Wave Equation |
|
|
34 | (2) |
|
|
36 | (1) |
|
2.3.3 The Uncertainty Principle |
|
|
36 | (1) |
|
2.3.4 Success of Quantum Mechanics |
|
|
37 | (1) |
|
2.4 Addendum 1: Derivation of Some Special Relativity Results |
|
|
38 | (2) |
|
|
38 | (1) |
|
|
38 | (1) |
|
|
39 | (1) |
|
2.5 Addendum 2: Solutions to Schrodinger's Wave Equation |
|
|
40 | (14) |
|
2.5.1 The Particle in a Box |
|
|
40 | (3) |
|
|
43 | (2) |
|
2.5.3 Energy Levels for Multielectron Atoms |
|
|
45 | (9) |
|
|
54 | (25) |
|
3.1 Development of the Modern Atom Model |
|
|
54 | (9) |
|
3.1.1 Discovery of Radioactivity |
|
|
54 | (3) |
|
3.1.2 Thomson's Atomic Model: The Plum Pudding Model |
|
|
57 | (1) |
|
3.1.3 The Rutherford Atomic Model |
|
|
58 | (1) |
|
3.1.4 The Bohr Atomic Model |
|
|
58 | (3) |
|
3.1.5 Extension of the Bohr Theory: Elliptic Orbits |
|
|
61 | (1) |
|
3.1.6 The Quantum Mechanical Model of the Atom |
|
|
62 | (1) |
|
3.2 Models of the Nucleus |
|
|
63 | (16) |
|
3.2.1 Fundamental Properties of the Nucleus |
|
|
63 | (2) |
|
3.2.2 The Proton-Electron Model |
|
|
65 | (1) |
|
3.2.3 The Proton-Neutron Model |
|
|
66 | (2) |
|
3.2.4 Stability of Nuclei |
|
|
68 | (2) |
|
3.2.5 The Liquid Drop Model of the Nucleus |
|
|
70 | (4) |
|
|
74 | (1) |
|
3.2.7 The Nuclear Shell Model |
|
|
75 | (1) |
|
3.2.8 Other Nuclear Models |
|
|
76 | (3) |
|
|
79 | (18) |
|
|
80 | (5) |
|
4.1.1 Nuclear and Atomic Masses |
|
|
80 | (1) |
|
4.1.2 Binding Energy of the Nucleus |
|
|
81 | (1) |
|
4.1.3 Average Nuclear Binding Energies |
|
|
82 | (3) |
|
4.2 Binding Energies of Isotopes |
|
|
85 | (2) |
|
4.3 Nucleon Separation Energy |
|
|
87 | (1) |
|
|
88 | (1) |
|
4.5 Examples of Binary Nuclear Reactions |
|
|
88 | (2) |
|
4.5.1 Multiple Reaction Outcomes |
|
|
89 | (1) |
|
4.6 Q-Value for a Reaction |
|
|
90 | (1) |
|
|
91 | (1) |
|
4.6.2 Radioactive Decay Reactions |
|
|
91 | (1) |
|
4.7 Conservation of Charge and the Calculation of Q-Values |
|
|
91 | (2) |
|
4.7.1 Special Case for Changes in the Proton Number |
|
|
93 | (1) |
|
4.8 Q-Value for Reactions Producing Excited Nuclei |
|
|
93 | (4) |
|
|
97 | (39) |
|
|
97 | (1) |
|
5.2 Types of Radioactive Decay |
|
|
98 | (1) |
|
5.3 Radioactive Decay Diagrams |
|
|
98 | (4) |
|
5.4 Energetics of Radioactive Decay |
|
|
102 | (9) |
|
|
102 | (1) |
|
5.4.2 Alpha-Particle Decay |
|
|
103 | (2) |
|
5.4.3 Beta-Particle Decay |
|
|
105 | (2) |
|
|
107 | (1) |
|
|
108 | (2) |
|
|
110 | (1) |
|
|
110 | (1) |
|
5.4.8 Internal Conversion |
|
|
111 | (1) |
|
5.5 Characteristics of Radioactive Decay |
|
|
111 | (6) |
|
|
112 | (1) |
|
|
113 | (1) |
|
|
113 | (1) |
|
5.5.4 Decay Probability for a Finite Time Interval |
|
|
114 | (1) |
|
|
114 | (1) |
|
|
115 | (1) |
|
5.5.7 Half-Life Measurement |
|
|
115 | (1) |
|
5.5.8 Decay by Competing Processes |
|
|
116 | (1) |
|
|
117 | (6) |
|
5.6.1 Decay with Production |
|
|
117 | (1) |
|
5.6.2 Three Component Decay Chains |
|
|
118 | (4) |
|
5.6.3 General Decay Chain |
|
|
122 | (1) |
|
5.7 Naturally Occurring Radionuclides |
|
|
123 | (5) |
|
5.7.1 Cosmogenic Radionuclides |
|
|
123 | (1) |
|
5.7.2 Singly Occurring Primordial Radionuclides |
|
|
124 | (1) |
|
5.7.3 Decay Series of Primordial Origin |
|
|
124 | (1) |
|
5.7.4 Secular Equilibrium |
|
|
125 | (3) |
|
|
128 | (3) |
|
5.8.1 Measuring the Decay of a Parent |
|
|
128 | (1) |
|
5.8.2 Measuring the Buildup of a Stable Daughter |
|
|
129 | (2) |
|
5.9 Radioactive Decay Data |
|
|
131 | (5) |
|
6 Binary Nuclear Reactions |
|
|
136 | (42) |
|
6.1 Types of Binary Reactions |
|
|
137 | (1) |
|
6.1.1 The Compound Nucleus |
|
|
137 | (1) |
|
6.2 Kinematics of Binary Two-Product Nuclear Reactions |
|
|
138 | (4) |
|
6.2.1 Energy/Mass Conservation |
|
|
139 | (1) |
|
6.2.2 Conservation of Energy and Linear Momentum |
|
|
139 | (3) |
|
6.3 Reaction Threshold Energy |
|
|
142 | (3) |
|
6.3.1 Kinematic Threshold |
|
|
142 | (1) |
|
6.3.2 Coulomb Barrier Threshold |
|
|
143 | (1) |
|
6.3.3 Overall Threshold Energy |
|
|
144 | (1) |
|
6.4 Applications of Binary Kinematics |
|
|
145 | (2) |
|
6.4.1 A Neutron Detection Reaction |
|
|
145 | (1) |
|
6.4.2 A Neutron Production Reaction |
|
|
146 | (1) |
|
6.4.3 Heavy Particle Scattering from an Electron |
|
|
146 | (1) |
|
6.5 Reactions Involving Neutrons |
|
|
147 | (6) |
|
|
147 | (3) |
|
6.5.2 Neutron Capture Reactions |
|
|
150 | (1) |
|
|
150 | (3) |
|
6.6 Characteristics of the Fission Reaction |
|
|
153 | (10) |
|
|
154 | (3) |
|
6.6.2 Neutron Emission in Fission |
|
|
157 | (3) |
|
6.6.3 Energy Released in Fission |
|
|
160 | (3) |
|
|
163 | (15) |
|
6.7.1 Thermonuclear Fusion |
|
|
163 | (3) |
|
6.7.2 Energy Production in Stars |
|
|
166 | (5) |
|
|
171 | (7) |
|
7 Radiation Interactions with Matter |
|
|
178 | (43) |
|
7.1 Attenuation of Neutral Particle Beams |
|
|
179 | (6) |
|
7.1.1 The Linear Interaction Coefficient |
|
|
180 | (1) |
|
7.1.2 Attenuation of Uncollided Radiation |
|
|
181 | (1) |
|
7.1.3 Average Travel Distance Before an Interaction |
|
|
181 | (1) |
|
|
182 | (1) |
|
7.1.5 Scattered Radiation |
|
|
183 | (1) |
|
7.1.6 Microscopic Cross Sections |
|
|
183 | (2) |
|
7.2 Calculation of Radiation Interaction Rates |
|
|
185 | (6) |
|
|
185 | (1) |
|
7.2.2 Reaction-Rate Density |
|
|
186 | (1) |
|
7.2.3 Generalization to Energy- and Time-Dependent Situations |
|
|
186 | (1) |
|
|
187 | (1) |
|
7.2.5 Uncollided Flux Density from an Isotropic Point Source |
|
|
188 | (3) |
|
|
191 | (5) |
|
7.3.1 Photoelectric Effect |
|
|
192 | (1) |
|
|
192 | (2) |
|
|
194 | (1) |
|
7.3.4 Photon Attenuation Coefficients |
|
|
195 | (1) |
|
|
196 | (9) |
|
7.4.1 Classification of Types of Interactions |
|
|
198 | (7) |
|
7.4.2 Fission Cross Sections |
|
|
205 | (1) |
|
7.5 Attenuation of Charged Particles |
|
|
205 | (16) |
|
7.5.1 Interaction Mechanisms |
|
|
205 | (2) |
|
|
207 | (2) |
|
|
209 | (3) |
|
7.5.4 Estimating Charged-Particle Ranges |
|
|
212 | (9) |
|
8 Detection and Measurement of Radiation |
|
|
221 | (49) |
|
|
222 | (14) |
|
|
222 | (3) |
|
|
225 | (3) |
|
8.1.3 Proportional Counters |
|
|
228 | (6) |
|
8.1.4 Geiger-Muller Counters |
|
|
234 | (2) |
|
8.2 Scintillation Detectors |
|
|
236 | (11) |
|
8.2.1 Inorganic Scintillators |
|
|
237 | (4) |
|
8.2.2 Organic Scintillators |
|
|
241 | (3) |
|
|
244 | (3) |
|
8.3 Semiconductor Detectors |
|
|
247 | (7) |
|
|
249 | (2) |
|
|
251 | (2) |
|
8.3.3 Compound Semiconductor Detectors |
|
|
253 | (1) |
|
|
254 | (2) |
|
|
254 | (1) |
|
8.4.2 Pocket Ion Chambers |
|
|
254 | (1) |
|
|
255 | (1) |
|
8.5 Other Interesting Detectors |
|
|
256 | (3) |
|
8.5.1 Cloud Chambers, Bubble Chambers, and Superheated Drop Detectors |
|
|
256 | (1) |
|
8.5.2 Cryogenic Detectors |
|
|
257 | (1) |
|
|
258 | (1) |
|
|
259 | (3) |
|
8.6.1 Types of Measurement Uncertainties |
|
|
259 | (1) |
|
8.6.2 Uncertainty Assignment Based Upon Counting Statistics |
|
|
259 | (3) |
|
|
262 | (1) |
|
|
262 | (8) |
|
|
264 | (1) |
|
|
265 | (1) |
|
|
265 | (1) |
|
|
265 | (1) |
|
8.7.5 Discriminator/Single Channel Analyzer |
|
|
266 | (1) |
|
|
266 | (1) |
|
8.7.7 Multichannel Analyzer |
|
|
266 | (1) |
|
|
267 | (1) |
|
8.7.9 Other NIM Components |
|
|
267 | (3) |
|
9 Radiation Doses and Hazard Assessment |
|
|
270 | (51) |
|
|
270 | (2) |
|
9.2 Dosimetric Quantities |
|
|
272 | (10) |
|
9.2.1 Energy Imparted to the Medium |
|
|
273 | (1) |
|
|
274 | (1) |
|
|
274 | (1) |
|
9.2.4 Calculating Kerma and Absorbed Doses |
|
|
274 | (3) |
|
|
277 | (1) |
|
9.2.6 Relative Biological Effectiveness |
|
|
278 | (1) |
|
|
279 | (1) |
|
|
279 | (1) |
|
9.2.9 Effective Dose Equivalent |
|
|
280 | (1) |
|
|
281 | (1) |
|
9.3 Doses from Ingested Radionuclides |
|
|
282 | (3) |
|
9.3.1 Committed Dose Equivalent |
|
|
283 | (1) |
|
9.3.2 The General Method for Internal Dose Evaluation |
|
|
283 | (1) |
|
|
284 | (1) |
|
9.4 Natural Exposures for Humans |
|
|
285 | (3) |
|
9.5 Health Effects from Large Acute Doses |
|
|
288 | (6) |
|
9.5.1 Effects on Individual Cells |
|
|
289 | (1) |
|
9.5.2 Deterministic Effects in Organs and Tissues |
|
|
289 | (3) |
|
9.5.3 Potentially Lethal Exposure to Low-LET Radiation |
|
|
292 | (2) |
|
|
294 | (3) |
|
9.6.1 Classification of Genetic Effects |
|
|
294 | (1) |
|
9.6.2 Summary of Risk Estimates |
|
|
295 | (2) |
|
9.7 Cancer Risks from Radiation Exposures |
|
|
297 | (6) |
|
9.7.1 Estimating Radiogenic Cancer Risks |
|
|
299 | (1) |
|
9.7.2 Dose-Response Models for Cancer |
|
|
300 | (1) |
|
9.7.3 Average Cancer Risks for Exposed Populations |
|
|
301 | (1) |
|
9.7.4 Probability of Causation Calculations |
|
|
301 | (2) |
|
9.8 Radon and Lung Cancer Risks |
|
|
303 | (4) |
|
9.8.1 Radon Activity Concentrations |
|
|
305 | (1) |
|
|
306 | (1) |
|
9.9 Radiation Protection Standards |
|
|
307 | (4) |
|
9.9.1 Risk-Related Dose Limits |
|
|
308 | (1) |
|
9.9.2 The 1987 NCRP Exposure Limits |
|
|
309 | (2) |
|
|
311 | (10) |
|
9.10.1 A Hormetic Dose-Effect Model |
|
|
312 | (1) |
|
9.10.2 Evidence for Hormesis |
|
|
313 | (2) |
|
9.10.3 Is the LNT Model Doomed? |
|
|
315 | (6) |
|
10 Principles of Nuclear Reactors |
|
|
321 | (49) |
|
|
322 | (1) |
|
|
322 | (1) |
|
10.3 Thermal-Neutron Properties of Fuels |
|
|
323 | (1) |
|
10.4 The Neutron Life Cycle in a Thermal Reactor |
|
|
324 | (10) |
|
10.4.1 Quantification of the Neutron Cycle |
|
|
325 | (6) |
|
10.4.2 Effective Multiplication Factor |
|
|
331 | (3) |
|
10.5 Homogeneous and Heterogeneous Cores |
|
|
334 | (3) |
|
|
337 | (2) |
|
|
339 | (9) |
|
10.7.1 A Simple Reactor Kinetics Model |
|
|
339 | (1) |
|
|
340 | (1) |
|
10.7.3 Reactivity and Delta-k |
|
|
341 | (1) |
|
10.7.4 Revised Simplified Reactor Kinetics Models |
|
|
342 | (2) |
|
10.7.5 Power Transients Following a Reactivity Insertion |
|
|
344 | (4) |
|
|
348 | (3) |
|
10.8.1 Feedback Caused by Isotopic Changes |
|
|
348 | (1) |
|
10.8.2 Feedback Caused by Temperature Changes |
|
|
349 | (2) |
|
10.9 Fission Product Poisons |
|
|
351 | (5) |
|
|
351 | (4) |
|
10.9.2 Samarium Poisoning |
|
|
355 | (1) |
|
10.10 Addendum 1: The Diffusion Equation |
|
|
356 | (6) |
|
10.10.1 An Example Fixed-Source Problem |
|
|
359 | (1) |
|
10.10.2 An Example Criticality Problem |
|
|
360 | (1) |
|
10.10.3 More Detailed Neutron-Field Descriptions |
|
|
361 | (1) |
|
10.11 Addendum 2: Kinetic Model with Delayed Neutrons |
|
|
362 | (2) |
|
10.12 Addendum 3: Solution for a Step Reactivity Insertion |
|
|
364 | (6) |
|
|
370 | (59) |
|
11.1 Nuclear Electric Power |
|
|
370 | (8) |
|
11.1.1 Electricity from Thermal Energy |
|
|
371 | (1) |
|
11.1.2 Conversion Efficiency |
|
|
371 | (2) |
|
11.1.3 Some Typical Power Reactors |
|
|
373 | (3) |
|
11.1.4 Coolant Limitations |
|
|
376 | (1) |
|
11.1.5 Industrial Infrastructure |
|
|
376 | (1) |
|
11.1.6 Evolution of Nuclear Power Reactors |
|
|
377 | (1) |
|
11.2 Generation II Pressurized Water Reactors |
|
|
378 | (7) |
|
11.2.1 The Steam Cycle of a PWR |
|
|
378 | (1) |
|
11.2.2 Major Components of a PWR |
|
|
378 | (7) |
|
11.3 Generation II Boiling Water Reactors |
|
|
385 | (5) |
|
11.3.1 The Steam Cycle of a BWR |
|
|
385 | (1) |
|
11.3.2 Major Components of a BWR |
|
|
385 | (5) |
|
11.4 Generation III Nuclear Reactor Designs |
|
|
390 | (5) |
|
11.4.1 The ABWR and ESBWR Designs |
|
|
390 | (2) |
|
11.4.2 The System 80+ Design |
|
|
392 | (1) |
|
11.4.3 AP600 and AP1000 Designs |
|
|
392 | (1) |
|
11.4.4 Other Evolutionary LWR Designs |
|
|
393 | (1) |
|
11.4.5 Heavy Water Reactors |
|
|
394 | (1) |
|
11.4.6 Gas-Cooled Reactors |
|
|
394 | (1) |
|
11.4.7 Liquid-Metal Fast-Breeder Reactors |
|
|
395 | (1) |
|
11.5 Generation IV Nuclear Reactor Designs |
|
|
395 | (6) |
|
11.5.1 Supercritical Water-Cooled Reactors |
|
|
397 | (1) |
|
11.5.2 Lead-Cooled Fast Reactors |
|
|
398 | (1) |
|
11.5.3 Molten-Salt Reactors |
|
|
399 | (1) |
|
11.5.4 Gas-Cooled Fast Reactors |
|
|
399 | (1) |
|
11.5.5 Very High-Temperature Fast Reactors |
|
|
399 | (1) |
|
11.5.6 Sodium-Cooled Fast Reactors |
|
|
400 | (1) |
|
11.5.7 The GEN IV International Forum |
|
|
400 | (1) |
|
11.6 Other Advanced Reactor Concepts |
|
|
401 | (9) |
|
11.7 The Nuclear Fuel Cycle |
|
|
410 | (10) |
|
11.7.1 Uranium Requirements and Availability |
|
|
412 | (1) |
|
11.7.2 Enrichment Techniques |
|
|
413 | (2) |
|
|
415 | (1) |
|
|
416 | (4) |
|
|
420 | (9) |
|
11.8.1 Naval Applications |
|
|
420 | (1) |
|
11.8.2 Other Marine Applications |
|
|
421 | (1) |
|
11.8.3 Nuclear Propulsion in Space |
|
|
422 | (7) |
|
12 Fusion Reactors and Other Conversion Devices |
|
|
429 | (47) |
|
|
429 | (3) |
|
12.1.1 Energy Production in Plasmas |
|
|
430 | (2) |
|
12.2 Magnetically Confined Fusion (MCF) |
|
|
432 | (8) |
|
12.2.1 Fusion Energy Gain Factor |
|
|
432 | (1) |
|
|
433 | (1) |
|
12.2.3 Triple Product Figure-of-Merit |
|
|
434 | (1) |
|
|
435 | (1) |
|
12.2.5 History of Magnetically Confined Fusion Reactors |
|
|
436 | (1) |
|
12.2.6 The ITER Fusion Reactor |
|
|
437 | (3) |
|
12.3 Inertial Confinement Fusion (ICF) |
|
|
440 | (4) |
|
|
441 | (2) |
|
12.3.2 ICF Technical Problems |
|
|
443 | (1) |
|
12.4 Other Fusion Machines |
|
|
444 | (5) |
|
|
444 | (1) |
|
12.4.2 The Spherical Tokamak |
|
|
445 | (1) |
|
12.4.3 Revival of the Stellarator |
|
|
446 | (1) |
|
12.4.4 Prospects for Commercial Fusion Power |
|
|
447 | (2) |
|
12.5 Thermoelectric Generators |
|
|
449 | (3) |
|
12.5.1 Radionuclide Thermoelectric Generators |
|
|
450 | (2) |
|
12.6 Thermionic Electrical Generators |
|
|
452 | (7) |
|
12.6.1 Conversion Efficiency |
|
|
456 | (2) |
|
12.6.2 In-Pile Thermionic Generator |
|
|
458 | (1) |
|
|
459 | (2) |
|
|
461 | (2) |
|
12.9 Direct Conversion of Nuclear Radiation |
|
|
463 | (2) |
|
12.9.1 Types of Nuclear Radiation Conversion Devices |
|
|
463 | (1) |
|
12.9.2 Betavoltaic Batteries |
|
|
464 | (1) |
|
12.10 Radioisotopes for Thermal Power Sources |
|
|
465 | (2) |
|
|
467 | (9) |
|
12.11.1 The U.S. Space Reactor Program |
|
|
467 | (1) |
|
12.11.2 The Russian Space Reactor Program |
|
|
468 | (8) |
|
13 Nuclear Technology in Industry and Research |
|
|
476 | (35) |
|
13.1 Production of Radioisotopes |
|
|
476 | (1) |
|
13.2 Industrial and Research Uses of Radioisotopes and Radiation |
|
|
477 | (2) |
|
|
479 | (3) |
|
|
479 | (1) |
|
13.3.2 Pipeline Interfaces |
|
|
480 | (1) |
|
|
480 | (1) |
|
13.3.4 Flow Rate Measurements |
|
|
480 | (1) |
|
|
481 | (1) |
|
|
481 | (1) |
|
|
481 | (1) |
|
|
481 | (1) |
|
|
482 | (1) |
|
13.3.10 Frequency Response |
|
|
482 | (1) |
|
13.3.11 Surface Temperature Measurements |
|
|
482 | (1) |
|
|
482 | (1) |
|
13.4 Materials Affect Radiation |
|
|
482 | (10) |
|
|
482 | (3) |
|
|
485 | (1) |
|
|
486 | (1) |
|
|
487 | (1) |
|
13.4.5 Radiation Absorptiometry |
|
|
487 | (1) |
|
|
488 | (1) |
|
13.4.7 Neutron Activation Analysis (NAA) |
|
|
488 | (1) |
|
13.4.8 Neutron Capture-Gamma Ray Analysis |
|
|
489 | (1) |
|
13.4.9 X-Ray Fluorescence Analysis |
|
|
489 | (2) |
|
13.4.10 Proton Induced Gamma-Ray Emission (PIGE) |
|
|
491 | (1) |
|
13.4.11 Molecular Structure Determination |
|
|
491 | (1) |
|
|
491 | (1) |
|
13.5 Radiation Affects Materials |
|
|
492 | (2) |
|
|
492 | (1) |
|
|
492 | (1) |
|
|
493 | (1) |
|
13.5.4 Polymer Modification |
|
|
493 | (1) |
|
13.5.5 Biological Mutation Studies |
|
|
493 | (1) |
|
13.5.6 Chemonuclear Processing |
|
|
493 | (1) |
|
13.6 Particle Accelerators |
|
|
494 | (17) |
|
13.6.1 Cockcroft-Walton Accelerator |
|
|
494 | (1) |
|
13.6.2 Van de Graaff Accelerator |
|
|
495 | (2) |
|
13.6.3 Linear Accelerators |
|
|
497 | (2) |
|
|
499 | (2) |
|
13.6.5 The Synchrocyclotron and the Isochronous Cyclotron |
|
|
501 | (1) |
|
13.6.6 Proton Synchrotrons |
|
|
502 | (2) |
|
|
504 | (7) |
|
14 Medical Applications of Nuclear Technology |
|
|
511 | (44) |
|
|
513 | (23) |
|
14.1.1 X-Ray Projection Imaging |
|
|
513 | (5) |
|
|
518 | (1) |
|
|
519 | (1) |
|
|
519 | (1) |
|
14.1.5 X-Ray Computed Tomography (CT) |
|
|
520 | (6) |
|
14.1.6 CT Detector Technology |
|
|
526 | (1) |
|
14.1.7 Single Photon Emission Computed Tomography (SPECT) |
|
|
526 | (3) |
|
14.1.8 Positron Emission Tomography (PET) |
|
|
529 | (5) |
|
14.1.9 Magnetic Resonance Imaging (MRI) |
|
|
534 | (2) |
|
|
536 | (2) |
|
14.3 Diagnostic Radiotracers |
|
|
538 | (1) |
|
14.4 Radioimmunoscintigraphy |
|
|
539 | (1) |
|
|
540 | (15) |
|
14.5.1 Early Applications |
|
|
540 | (2) |
|
|
542 | (1) |
|
14.5.3 Accelerator Based Teletherapy |
|
|
542 | (1) |
|
14.5.4 Three Dimensional Conformal Radiation Therapy (CRT) |
|
|
542 | (2) |
|
14.5.5 Intensity Modulated Radiation Therapy |
|
|
544 | (1) |
|
14.5.6 Electron Beam Therapy |
|
|
544 | (1) |
|
14.5.7 Proton Beam Therapy |
|
|
545 | (2) |
|
14.5.8 Stereotactic Radiation Therapy |
|
|
547 | (1) |
|
14.5.9 Clinical Brachytherapy |
|
|
547 | (2) |
|
14.5.10 Radionuclide Therapy |
|
|
549 | (1) |
|
14.5.11 Boron Neutron Capture Therapy |
|
|
549 | (6) |
A Fundamental Atomic Data |
|
555 | (15) |
B Atomic Mass Table |
|
570 | (18) |
C Cross Sections and Related Data |
|
588 | (8) |
D Decay Characteristics of Selected Radionuclides |
|
596 | |