Muutke küpsiste eelistusi

Fundamentals of Nuclear Science and Engineering [Kõva köide]

(Kansas State University, Manhattan, USA), (Kansas State University, Manhattan, USA)
  • Formaat: Hardback, 524 pages, kõrgus x laius: 254x178 mm, kaal: 1111 g
  • Ilmumisaeg: 24-Jul-2002
  • Kirjastus: Marcel Dekker Inc
  • ISBN-10: 0824708342
  • ISBN-13: 9780824708344
  • Kõva köide
  • Hind: 81,54 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 524 pages, kõrgus x laius: 254x178 mm, kaal: 1111 g
  • Ilmumisaeg: 24-Jul-2002
  • Kirjastus: Marcel Dekker Inc
  • ISBN-10: 0824708342
  • ISBN-13: 9780824708344
From the basic concepts of nuclear science to the design of nuclear power reactors and other industrial applications, Shultis (mechanical and nuclear engineering, Kansas State U.) and Faw (emeritus, mechanical and nuclear engineering, Kansas State U.) present chapters on atomic/nuclear models, nuclear energetics, radioactivity, binary nuclear reactions, radiation interactions with matter, detection and measurement of radiation, radiation doses and hazard assessment, principles of nuclear reactors, nuclear power, alternative methods for converting nuclear energy to electricity, industrial and research applications, and medical applications. Annotation c. Book News, Inc., Portland, OR (booknews.com)

Fundamentals of Nuclear Science and Engineering provides an ideal introduction to the subject. The first half of the text reviews the important results of "modern" physics and introduces the fundamentals of nuclear science. The second half introduces the theory of nuclear reactors and its application in electrical power production and propulsion. It also surveys many other applications of nuclear technology encountered in space research, industry, and medicine. Each chapter contains extensive problem sets, and appendices at the end of the text furnish large amounts of practical data that enable students to perform a wealth of calculations.

Among the myriad concepts, principles, and applications addressed in this text, Fundamentals of Nuclear Science and Engineering

  • Describes sources of radiation, radiation interactions, and the results of such interactions
  • Summarizes developments in the creation of atomic and nuclear models
  • Develops the kinematics and energetics of nuclear reactions and radioactivity
  • Identifies and assesses biological risks associated with ionizing radiation
  • Presents the theory of nuclear reactors and their dynamic behavior
  • Discusses the design and characteristics of modern nuclear power reactors
  • Summarizes the nuclear fuel cycle and radioactive waste management
  • Describes methods for directly converting nuclear energy into electricity
  • Presents an overview of nuclear propulsion for ships and space crafts
  • Explores the use of nuclear techniques in medical therapy and diagnosis
  • Covers basic concepts in theory of special relativity, wave-particle duality, and quantum mechanics

    Fundamentals of Nuclear Science and Engineering builds the background students embarking on the study of nuclear engineering and technology need to understand and quantify nuclear phenomena and to move forward into higher-level studies.
  • Fundamental Concepts
    1(15)
    Modern Units
    1(4)
    Special Nuclear Units
    4(1)
    Physical Constants
    5(1)
    The Atom
    5(8)
    Atomic and Nuclear Nomenclature
    6(2)
    Atomic and Molecular Weights
    8(1)
    Avogadro's Number
    9(1)
    Mass of an Atom
    10(1)
    Atomic Number Density
    10(1)
    Size of an Atom
    11(1)
    Atomic and Isotopic Abundances
    12(1)
    Nuclear Dimensions
    12(1)
    Chart of the Nuclides
    13(3)
    Other Sources of Atomic/Nuclear Information
    13(3)
    Modern Physics Concepts
    16(32)
    The Special Theory of Relativity
    16(6)
    Principle of Relativity
    18(1)
    Results of the Special Theory of Relativity
    19(3)
    Radiation as Waves and Particles
    22(8)
    The Photoelectric Effect
    23(2)
    Compton Scattering
    25(2)
    Electromagnetic Radiation: Wave-Particle Duality
    27(1)
    Electron Scattering
    28(1)
    Wave-Particle Duality
    29(1)
    Quantum Mechanics
    30(4)
    Schrodinger's Wave Equation
    30(2)
    The Wave Function
    32(1)
    The Uncertainty Principle
    33(1)
    Success of Quantum Mechanics
    34(1)
    Addendum 1: Derivation of Some Special Relativity Results
    34(3)
    Time Dilation
    34(1)
    Length Contraction
    35(1)
    Mass Increase
    36(1)
    Addendum 2: Solutions to Schrodinger's Wave Equation
    37(11)
    The Particle in a Box
    37(2)
    The Hydrogen Atom
    39(4)
    Energy Levels for Multielectron Atoms
    43(5)
    Atomic/Nuclear Models
    48(23)
    Development of the Modern Atom Model
    48(9)
    Discovery of Radioactivity
    48(2)
    Thomson's Atomic Model: The Plum Pudding Model
    50(1)
    The Rutherford Atomic Model
    51(1)
    The Bohr Atomic Model
    52(3)
    Extension of the Bohr Theory: Elliptic Orbits
    55(1)
    The Quantum Mechanical Model of the Atom
    56(1)
    Models of the Nucleus
    57(14)
    Fundamental Properties of the Nucleus
    57(2)
    The Proton-Electron Model
    59(1)
    The Proton-Neutron Model
    60(2)
    Stability of Nuclei
    62(2)
    The Liquid Drop Model of the Nucleus
    64(4)
    The Nuclear Shell Model
    68(1)
    Other Nuclear Models
    68(3)
    Nuclear Energetics
    71(15)
    Binding Energy
    72(4)
    Nuclear and Atomic Masses
    72(1)
    Nuclear Energy of the Nucleus
    73(1)
    Average Nuclear Binding Energies
    74(2)
    Nucleon Separation Energy
    76(2)
    Nuclear Reactions
    78(1)
    Examples of Binary Nuclear Reactions
    78(2)
    Multiple Reaction Outcomes
    79(1)
    Q-Value for a Reaction
    80(1)
    Binary Reaction
    81(1)
    Radioactive Decay Reactions
    81(1)
    Conservation of Charge and the Calculation of Q-Values
    81(2)
    Special Case for Changes in the Proton Number
    82(1)
    Q-Value for Reactions Producing Excited Nulcei
    83(3)
    Radioactivity
    86(36)
    Overview
    86(2)
    Types of Radioactive Decay
    88(1)
    Energetics of Radioactive Decay
    88(10)
    Gamma Decay
    88(1)
    Alpha-Particle Decay
    89(3)
    Beta-Particle Decay
    92(1)
    Positron Decay
    93(2)
    Electron Capture
    95(1)
    Neutron Decay
    96(1)
    Proton Decay
    96(1)
    Internal Conversion
    97(1)
    Examples of Energy-Level Diagrams
    98(1)
    Characteristics of Radioactive Decay
    98(7)
    The Decay Constant
    98(2)
    Exponential Decay
    100(1)
    The Half-Life
    101(1)
    Decay Probability for a Finite Time Interval
    101(1)
    Mean Lifetime
    102(1)
    Activity
    102(1)
    Half-Life Measurement
    103(1)
    Decay by Competing Processes
    104(1)
    Decay Dynamics
    105(6)
    Decay with Production
    105(1)
    Three Component Decay Chains
    106(4)
    General Decay Chain
    110(1)
    Naturally Occurring Radionuclides
    111(4)
    Cosmogenic Radionuclides
    111(1)
    Singly Occurring Primordial Radionuclides
    111(1)
    Decay Series of Primordial Origin
    112(1)
    Secular Equilibrium
    112(3)
    Radiodating
    115(7)
    Measuring the Decay of a Parent
    116(1)
    Measuring the Buildup of a Stable Daughter
    117(5)
    Binary Nuclear Reactions
    122(39)
    Types of Binary Reactions
    123(1)
    The Compound Nucleus
    123(1)
    Kinematics of Binary Two-Product Nuclear Reactions
    124(4)
    Energy / Mass Conservation
    125(1)
    Conservation of Energy and Linear Momentum
    125(3)
    Reaction Threshold Energy
    128(3)
    Kinematic Threshold
    128(1)
    Coulomb Barrier Threshold
    129(1)
    Overall Threshold Energy
    130(1)
    Applications of Binary Kinematics
    131(2)
    A Neutron Detection Reaction
    131(1)
    A Neutron Production Reaction
    131(1)
    Heavy Particle Scattering from an Electron
    132(1)
    Reactions Involving Neutrons
    133(5)
    Neutron Scattering
    133(3)
    Neutron Capture Reactions
    136(1)
    Fission Reactions
    136(2)
    Characteristics of the Fission Reaction
    138(11)
    Fission Products
    140(2)
    Neutron Emission in Fission
    142(4)
    Energy Released in Fission
    146(3)
    Fusion Reactions
    149(12)
    Thermonuclear Fusion
    149(3)
    Energy Production in Stars
    152(4)
    Nucleogenesis
    156(5)
    Radiation Interactions with Matter
    161(41)
    Attenuation of Neutral Particle Beams
    162(6)
    The Linear Interaction Coefficient
    163(1)
    Attenuation of Uncollided Radiation
    164(1)
    Average Travel Distance Before an Interaction
    164(1)
    Half-Thickness
    165(1)
    Scattered Radiation
    166(1)
    Microscopic Cross Sections
    166(2)
    Calculation of Radiation Interaction Rates
    168(6)
    Flux Density
    168(1)
    Reaction-Rate Density
    169(1)
    Generalization to Energy-and Time-Dependent Situations
    169(1)
    Radiation Fluence
    170(1)
    Uncollided Flux Density from an Isotropic Point Source
    171(3)
    Photon Interactions
    174(4)
    Photoelectric Effect
    174(1)
    Compton Scattering
    175(2)
    Pair Production
    177(1)
    Photon Attenuation Coefficients
    178(1)
    Neutron Interactions
    178(10)
    Classification of Types of Interactions
    181(6)
    Fission Cross Sections
    187(1)
    Attenuation of Charged Particles
    188(14)
    Interaction Mechanisms
    188(2)
    Particle Range
    190(2)
    Stopping Power
    192(2)
    Estimating Charged-Particle Ranges
    194(8)
    Detection and Measurement of Radiation
    202(21)
    Gas-Filled Radiation Detectors
    203(8)
    Ionization Chambers
    205(1)
    Proportional Counters
    206(1)
    Geiger-Mueller Counters
    207(4)
    Scintillation Detectors
    211(3)
    Semiconductor Ionizing-Radiation Detectors
    214(4)
    Personal Dosimeters
    218(1)
    The Pocket Ion Chamber
    218(1)
    The Film Badge
    218(1)
    The Thermoluminescent Dosimeter
    218(1)
    Measurement Theory
    219(4)
    Types of Measurement Uncertainties
    219(1)
    Uncertainty Assignment Based Upon Counting Statistics
    219(1)
    Dead Time
    220(1)
    Energy Resolution
    221(2)
    Radiation Doses and Hazard Assessment
    223(40)
    Historical Roots
    223(2)
    Dosimetric Quantities
    225(10)
    Energy Imparted to the Medium
    226(1)
    Absorbed Dose
    227(1)
    Kerma
    227(1)
    Calculating Kerma and Absorbed Doses
    227(3)
    Exposure
    230(1)
    Relative Biological Effectiveness
    231(1)
    Dose Equivalent
    232(1)
    Quality Factor
    232(1)
    Effective Dose Equivalent
    233(1)
    Effective Dose
    234(1)
    Natural Exposures for Humans
    235(2)
    Health Effects from Large Acute Doses
    237(5)
    Effects on Individual Cells
    237(1)
    Deterministic Effects in Organs and Tissues
    237(3)
    Potentially Lethal Exposure to Low-LET Radiation
    240(2)
    Hereditary Effects
    242(4)
    Classification of Genetic Effects
    243(1)
    Summary of Risk Estimates
    244(2)
    Estimating Gonad Doses and Genetic Risks
    246(1)
    Cancer Risks from Radiation Exposures
    246(4)
    Dose-Response Models for Cancer
    247(1)
    Average Cancer Risks for Exposed Populations
    248(2)
    Radon and Lung Cancer Risks
    250(5)
    Radon Activity Concentrations
    252(1)
    Lung Cancer Risks
    253(2)
    Radiation Protection Standards
    255(8)
    Risk-Related Dose Limits
    255(1)
    The 1987 NCRP Exposure Limits
    256(7)
    Principles of Nuclear Reactors
    263(43)
    Neutron Moderation
    264(1)
    Thermal-Neutron Properties of Fuels
    264(1)
    The Neutron Life Cycle in a Thermal Reactor
    265(8)
    Quantification of the Neutron Cycle
    266(4)
    Effective Multiplication Factor
    270(3)
    Homogeneous and Heterogeneous Cores
    273(2)
    Reflectors
    275(1)
    Reactor Kinetics
    276(9)
    A Simple Reactor Kinetics Model
    276(1)
    Delayed Neutrons
    277(1)
    Reactivity and Delta-k
    278(1)
    Revised Simplified Reactor Kinetics Models
    279(2)
    Power Transients Following a Reactivity Insertion
    281(4)
    Reactivity Feedback
    285(3)
    Feedback Caused by Isotopic Changes
    285(1)
    Feedback Caused by Temperature Changes
    286(2)
    Fission Product Poisons
    288(5)
    Xenon Poisoning
    288(4)
    Samarium Poisoning
    292(1)
    Addendum 1: The Diffusion Equation
    293(6)
    An Example Fixed-Source Problem
    296(1)
    An Example Criticality Problem
    297(1)
    More Detailed Neutron-Field Descriptions
    298(1)
    Addendum 2: Kinetic Model with Delayed Neutrons
    299(2)
    Addendum 3: Solution for a Step Reactivity Insertion
    301(5)
    Nuclear Power
    306(41)
    Nuclear Electric Power
    306(6)
    Electricity from Thermal Energy
    306(2)
    Conversion Efficiency
    308(1)
    Some Typical Power Reactors
    308(3)
    Coolant Limitations
    311(1)
    Pressurized Water Reactors
    312(10)
    The Steam Cycle of a PWR
    312(2)
    Major Components of a PWR
    314(8)
    Boiling Water Reactors
    322(5)
    The Steam Cycle of a BWR
    322(1)
    Major Components of a BWR
    322(5)
    New Designs for Central-Station Power
    327(2)
    Certified Evolutionary Designs
    328(1)
    Certified Passive Design
    328(1)
    Other Evolutionary LWR Designs
    328(1)
    Gas Reactor Technology
    329(1)
    The Nuclear Fuel Cycle
    329(10)
    Uranium Requirements and Availability
    331(1)
    Enrichment Techniques
    332(2)
    Radioactive Waste
    334(1)
    Spent Fuel
    335(4)
    Nuclear Propulsion
    339(8)
    Naval Applications
    339(1)
    Other Marine Applications
    340(1)
    Nuclear Propulsion in Space
    341(6)
    Other Methods for Converting Nuclear Energy to Electricity
    347(26)
    Thermoelectric Generators
    347(5)
    Radionuclide Thermoelectric Generators
    349(3)
    Thermionic Electrical Generators
    352(6)
    Conversion Efficiency
    355(2)
    In-Pile Thermionic Generator
    357(1)
    AMTEC Conversion
    358(2)
    Stirling Converters
    360(1)
    Direct Conversion of Nuclear Radiation
    360(4)
    Types of Nuclear Radiation Conversion Devices
    362(1)
    Betavoltaic Batteries
    363(1)
    Radioisotopes for Thermal Power Sources
    364(2)
    Space Reactors
    366(7)
    The U.S. Space Reactor Program
    366(2)
    The Russian Space Reactor Program
    368(5)
    Nuclear Technology in Industry and Research
    373(19)
    Production of Radioisotopes
    373(1)
    Industrial and Research Uses of Radioisotopes and Radiation
    374(2)
    Tracer Applications
    376(3)
    Leak Detection
    376(1)
    Pipeline Interfaces
    377(1)
    Flow Patterns
    377(1)
    Flow Rate Measurements
    377(1)
    Labeled Reagents
    378(1)
    Tracer Dilution
    378(1)
    Wear Analyses
    378(1)
    Mixing Times
    378(1)
    Residence Times
    379(1)
    Frequency Response
    379(1)
    Surface Temperature Measurements
    379(1)
    Radiodating
    379(1)
    Materials Affect Radiation
    379(8)
    Radiography
    379(3)
    Thickness Gauging
    382(1)
    Density Gauges
    383(1)
    Level Gauges
    384(1)
    Radiation Absorptiometry
    384(1)
    Oil-Well Logging
    385(1)
    Neutron Activation Analysis
    385(1)
    Neutron Capture-Gamma Ray Analysis
    386(1)
    Molecular Structure Determination
    386(1)
    Smoke Detectors
    387(1)
    Radiation Affects Materials
    387(5)
    Food Preservation
    387(1)
    Sterilization
    388(1)
    Insect Control
    388(1)
    Polymer Modification
    388(1)
    Biological Mutation Studies
    388(1)
    Chemonuclear Processing
    389(3)
    Medical Applications of Nuclear Technology
    392(33)
    Diagnostic Imaging
    394(20)
    X-Ray Projection Imaging
    394(4)
    Fluoroscopy
    398(1)
    Mammography
    399(1)
    Bone Densitometry
    399(1)
    X-Ray Computed Tomography (CT)
    400(4)
    Single Photon Emission Computed Tomography (SPECT)
    404(3)
    Positron Emission Tomography (PET)
    407(4)
    Magnetic Resonance Imaging (MRI)
    411(3)
    Radioimmunoassay
    414(2)
    Diagnostic Radiotracers
    416(1)
    Radioimmunoscintigraphy
    417(1)
    Radiation Therapy
    417(8)
    Early Applications
    418(1)
    Teletherapy
    418(2)
    Radionuclide Therapy
    420(1)
    Clinical Brachytherapy
    420(1)
    Boron Neutron Capture Therapy
    421(4)
    Appendix A: Fundamental Atomic Data 425(15)
    Appendix B: Atomic Mass Table 440(18)
    Appendix C: Cross Sections and Related Data 458(8)
    Appendix D: Decay Characteristics of Selected Radionuclides 466(29)
    Index 495