|
|
1 | (15) |
|
|
1 | (4) |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
5 | (8) |
|
Atomic and Nuclear Nomenclature |
|
|
6 | (2) |
|
Atomic and Molecular Weights |
|
|
8 | (1) |
|
|
9 | (1) |
|
|
10 | (1) |
|
|
10 | (1) |
|
|
11 | (1) |
|
Atomic and Isotopic Abundances |
|
|
12 | (1) |
|
|
12 | (1) |
|
|
13 | (3) |
|
Other Sources of Atomic/Nuclear Information |
|
|
13 | (3) |
|
|
16 | (32) |
|
The Special Theory of Relativity |
|
|
16 | (6) |
|
|
18 | (1) |
|
Results of the Special Theory of Relativity |
|
|
19 | (3) |
|
Radiation as Waves and Particles |
|
|
22 | (8) |
|
|
23 | (2) |
|
|
25 | (2) |
|
Electromagnetic Radiation: Wave-Particle Duality |
|
|
27 | (1) |
|
|
28 | (1) |
|
|
29 | (1) |
|
|
30 | (4) |
|
Schrodinger's Wave Equation |
|
|
30 | (2) |
|
|
32 | (1) |
|
The Uncertainty Principle |
|
|
33 | (1) |
|
Success of Quantum Mechanics |
|
|
34 | (1) |
|
Addendum 1: Derivation of Some Special Relativity Results |
|
|
34 | (3) |
|
|
34 | (1) |
|
|
35 | (1) |
|
|
36 | (1) |
|
Addendum 2: Solutions to Schrodinger's Wave Equation |
|
|
37 | (11) |
|
|
37 | (2) |
|
|
39 | (4) |
|
Energy Levels for Multielectron Atoms |
|
|
43 | (5) |
|
|
48 | (23) |
|
Development of the Modern Atom Model |
|
|
48 | (9) |
|
Discovery of Radioactivity |
|
|
48 | (2) |
|
Thomson's Atomic Model: The Plum Pudding Model |
|
|
50 | (1) |
|
The Rutherford Atomic Model |
|
|
51 | (1) |
|
|
52 | (3) |
|
Extension of the Bohr Theory: Elliptic Orbits |
|
|
55 | (1) |
|
The Quantum Mechanical Model of the Atom |
|
|
56 | (1) |
|
|
57 | (14) |
|
Fundamental Properties of the Nucleus |
|
|
57 | (2) |
|
The Proton-Electron Model |
|
|
59 | (1) |
|
|
60 | (2) |
|
|
62 | (2) |
|
The Liquid Drop Model of the Nucleus |
|
|
64 | (4) |
|
|
68 | (1) |
|
|
68 | (3) |
|
|
71 | (15) |
|
|
72 | (4) |
|
Nuclear and Atomic Masses |
|
|
72 | (1) |
|
Nuclear Energy of the Nucleus |
|
|
73 | (1) |
|
Average Nuclear Binding Energies |
|
|
74 | (2) |
|
Nucleon Separation Energy |
|
|
76 | (2) |
|
|
78 | (1) |
|
Examples of Binary Nuclear Reactions |
|
|
78 | (2) |
|
Multiple Reaction Outcomes |
|
|
79 | (1) |
|
|
80 | (1) |
|
|
81 | (1) |
|
Radioactive Decay Reactions |
|
|
81 | (1) |
|
Conservation of Charge and the Calculation of Q-Values |
|
|
81 | (2) |
|
Special Case for Changes in the Proton Number |
|
|
82 | (1) |
|
Q-Value for Reactions Producing Excited Nulcei |
|
|
83 | (3) |
|
|
86 | (36) |
|
|
86 | (2) |
|
Types of Radioactive Decay |
|
|
88 | (1) |
|
Energetics of Radioactive Decay |
|
|
88 | (10) |
|
|
88 | (1) |
|
|
89 | (3) |
|
|
92 | (1) |
|
|
93 | (2) |
|
|
95 | (1) |
|
|
96 | (1) |
|
|
96 | (1) |
|
|
97 | (1) |
|
Examples of Energy-Level Diagrams |
|
|
98 | (1) |
|
Characteristics of Radioactive Decay |
|
|
98 | (7) |
|
|
98 | (2) |
|
|
100 | (1) |
|
|
101 | (1) |
|
Decay Probability for a Finite Time Interval |
|
|
101 | (1) |
|
|
102 | (1) |
|
|
102 | (1) |
|
|
103 | (1) |
|
Decay by Competing Processes |
|
|
104 | (1) |
|
|
105 | (6) |
|
|
105 | (1) |
|
Three Component Decay Chains |
|
|
106 | (4) |
|
|
110 | (1) |
|
Naturally Occurring Radionuclides |
|
|
111 | (4) |
|
|
111 | (1) |
|
Singly Occurring Primordial Radionuclides |
|
|
111 | (1) |
|
Decay Series of Primordial Origin |
|
|
112 | (1) |
|
|
112 | (3) |
|
|
115 | (7) |
|
Measuring the Decay of a Parent |
|
|
116 | (1) |
|
Measuring the Buildup of a Stable Daughter |
|
|
117 | (5) |
|
|
122 | (39) |
|
Types of Binary Reactions |
|
|
123 | (1) |
|
|
123 | (1) |
|
Kinematics of Binary Two-Product Nuclear Reactions |
|
|
124 | (4) |
|
Energy / Mass Conservation |
|
|
125 | (1) |
|
Conservation of Energy and Linear Momentum |
|
|
125 | (3) |
|
Reaction Threshold Energy |
|
|
128 | (3) |
|
|
128 | (1) |
|
Coulomb Barrier Threshold |
|
|
129 | (1) |
|
|
130 | (1) |
|
Applications of Binary Kinematics |
|
|
131 | (2) |
|
A Neutron Detection Reaction |
|
|
131 | (1) |
|
A Neutron Production Reaction |
|
|
131 | (1) |
|
Heavy Particle Scattering from an Electron |
|
|
132 | (1) |
|
Reactions Involving Neutrons |
|
|
133 | (5) |
|
|
133 | (3) |
|
Neutron Capture Reactions |
|
|
136 | (1) |
|
|
136 | (2) |
|
Characteristics of the Fission Reaction |
|
|
138 | (11) |
|
|
140 | (2) |
|
Neutron Emission in Fission |
|
|
142 | (4) |
|
Energy Released in Fission |
|
|
146 | (3) |
|
|
149 | (12) |
|
|
149 | (3) |
|
Energy Production in Stars |
|
|
152 | (4) |
|
|
156 | (5) |
|
Radiation Interactions with Matter |
|
|
161 | (41) |
|
Attenuation of Neutral Particle Beams |
|
|
162 | (6) |
|
The Linear Interaction Coefficient |
|
|
163 | (1) |
|
Attenuation of Uncollided Radiation |
|
|
164 | (1) |
|
Average Travel Distance Before an Interaction |
|
|
164 | (1) |
|
|
165 | (1) |
|
|
166 | (1) |
|
Microscopic Cross Sections |
|
|
166 | (2) |
|
Calculation of Radiation Interaction Rates |
|
|
168 | (6) |
|
|
168 | (1) |
|
|
169 | (1) |
|
Generalization to Energy-and Time-Dependent Situations |
|
|
169 | (1) |
|
|
170 | (1) |
|
Uncollided Flux Density from an Isotropic Point Source |
|
|
171 | (3) |
|
|
174 | (4) |
|
|
174 | (1) |
|
|
175 | (2) |
|
|
177 | (1) |
|
Photon Attenuation Coefficients |
|
|
178 | (1) |
|
|
178 | (10) |
|
Classification of Types of Interactions |
|
|
181 | (6) |
|
|
187 | (1) |
|
Attenuation of Charged Particles |
|
|
188 | (14) |
|
|
188 | (2) |
|
|
190 | (2) |
|
|
192 | (2) |
|
Estimating Charged-Particle Ranges |
|
|
194 | (8) |
|
Detection and Measurement of Radiation |
|
|
202 | (21) |
|
Gas-Filled Radiation Detectors |
|
|
203 | (8) |
|
|
205 | (1) |
|
|
206 | (1) |
|
|
207 | (4) |
|
|
211 | (3) |
|
Semiconductor Ionizing-Radiation Detectors |
|
|
214 | (4) |
|
|
218 | (1) |
|
|
218 | (1) |
|
|
218 | (1) |
|
The Thermoluminescent Dosimeter |
|
|
218 | (1) |
|
|
219 | (4) |
|
Types of Measurement Uncertainties |
|
|
219 | (1) |
|
Uncertainty Assignment Based Upon Counting Statistics |
|
|
219 | (1) |
|
|
220 | (1) |
|
|
221 | (2) |
|
Radiation Doses and Hazard Assessment |
|
|
223 | (40) |
|
|
223 | (2) |
|
|
225 | (10) |
|
Energy Imparted to the Medium |
|
|
226 | (1) |
|
|
227 | (1) |
|
|
227 | (1) |
|
Calculating Kerma and Absorbed Doses |
|
|
227 | (3) |
|
|
230 | (1) |
|
Relative Biological Effectiveness |
|
|
231 | (1) |
|
|
232 | (1) |
|
|
232 | (1) |
|
Effective Dose Equivalent |
|
|
233 | (1) |
|
|
234 | (1) |
|
Natural Exposures for Humans |
|
|
235 | (2) |
|
Health Effects from Large Acute Doses |
|
|
237 | (5) |
|
Effects on Individual Cells |
|
|
237 | (1) |
|
Deterministic Effects in Organs and Tissues |
|
|
237 | (3) |
|
Potentially Lethal Exposure to Low-LET Radiation |
|
|
240 | (2) |
|
|
242 | (4) |
|
Classification of Genetic Effects |
|
|
243 | (1) |
|
Summary of Risk Estimates |
|
|
244 | (2) |
|
Estimating Gonad Doses and Genetic Risks |
|
|
246 | (1) |
|
Cancer Risks from Radiation Exposures |
|
|
246 | (4) |
|
Dose-Response Models for Cancer |
|
|
247 | (1) |
|
Average Cancer Risks for Exposed Populations |
|
|
248 | (2) |
|
Radon and Lung Cancer Risks |
|
|
250 | (5) |
|
Radon Activity Concentrations |
|
|
252 | (1) |
|
|
253 | (2) |
|
Radiation Protection Standards |
|
|
255 | (8) |
|
|
255 | (1) |
|
The 1987 NCRP Exposure Limits |
|
|
256 | (7) |
|
Principles of Nuclear Reactors |
|
|
263 | (43) |
|
|
264 | (1) |
|
Thermal-Neutron Properties of Fuels |
|
|
264 | (1) |
|
The Neutron Life Cycle in a Thermal Reactor |
|
|
265 | (8) |
|
Quantification of the Neutron Cycle |
|
|
266 | (4) |
|
Effective Multiplication Factor |
|
|
270 | (3) |
|
Homogeneous and Heterogeneous Cores |
|
|
273 | (2) |
|
|
275 | (1) |
|
|
276 | (9) |
|
A Simple Reactor Kinetics Model |
|
|
276 | (1) |
|
|
277 | (1) |
|
|
278 | (1) |
|
Revised Simplified Reactor Kinetics Models |
|
|
279 | (2) |
|
Power Transients Following a Reactivity Insertion |
|
|
281 | (4) |
|
|
285 | (3) |
|
Feedback Caused by Isotopic Changes |
|
|
285 | (1) |
|
Feedback Caused by Temperature Changes |
|
|
286 | (2) |
|
|
288 | (5) |
|
|
288 | (4) |
|
|
292 | (1) |
|
Addendum 1: The Diffusion Equation |
|
|
293 | (6) |
|
An Example Fixed-Source Problem |
|
|
296 | (1) |
|
An Example Criticality Problem |
|
|
297 | (1) |
|
More Detailed Neutron-Field Descriptions |
|
|
298 | (1) |
|
Addendum 2: Kinetic Model with Delayed Neutrons |
|
|
299 | (2) |
|
Addendum 3: Solution for a Step Reactivity Insertion |
|
|
301 | (5) |
|
|
306 | (41) |
|
|
306 | (6) |
|
Electricity from Thermal Energy |
|
|
306 | (2) |
|
|
308 | (1) |
|
Some Typical Power Reactors |
|
|
308 | (3) |
|
|
311 | (1) |
|
Pressurized Water Reactors |
|
|
312 | (10) |
|
|
312 | (2) |
|
Major Components of a PWR |
|
|
314 | (8) |
|
|
322 | (5) |
|
|
322 | (1) |
|
Major Components of a BWR |
|
|
322 | (5) |
|
New Designs for Central-Station Power |
|
|
327 | (2) |
|
Certified Evolutionary Designs |
|
|
328 | (1) |
|
|
328 | (1) |
|
Other Evolutionary LWR Designs |
|
|
328 | (1) |
|
|
329 | (1) |
|
|
329 | (10) |
|
Uranium Requirements and Availability |
|
|
331 | (1) |
|
|
332 | (2) |
|
|
334 | (1) |
|
|
335 | (4) |
|
|
339 | (8) |
|
|
339 | (1) |
|
Other Marine Applications |
|
|
340 | (1) |
|
Nuclear Propulsion in Space |
|
|
341 | (6) |
|
Other Methods for Converting Nuclear Energy to Electricity |
|
|
347 | (26) |
|
Thermoelectric Generators |
|
|
347 | (5) |
|
Radionuclide Thermoelectric Generators |
|
|
349 | (3) |
|
Thermionic Electrical Generators |
|
|
352 | (6) |
|
|
355 | (2) |
|
In-Pile Thermionic Generator |
|
|
357 | (1) |
|
|
358 | (2) |
|
|
360 | (1) |
|
Direct Conversion of Nuclear Radiation |
|
|
360 | (4) |
|
Types of Nuclear Radiation Conversion Devices |
|
|
362 | (1) |
|
|
363 | (1) |
|
Radioisotopes for Thermal Power Sources |
|
|
364 | (2) |
|
|
366 | (7) |
|
The U.S. Space Reactor Program |
|
|
366 | (2) |
|
The Russian Space Reactor Program |
|
|
368 | (5) |
|
Nuclear Technology in Industry and Research |
|
|
373 | (19) |
|
Production of Radioisotopes |
|
|
373 | (1) |
|
Industrial and Research Uses of Radioisotopes and Radiation |
|
|
374 | (2) |
|
|
376 | (3) |
|
|
376 | (1) |
|
|
377 | (1) |
|
|
377 | (1) |
|
|
377 | (1) |
|
|
378 | (1) |
|
|
378 | (1) |
|
|
378 | (1) |
|
|
378 | (1) |
|
|
379 | (1) |
|
|
379 | (1) |
|
Surface Temperature Measurements |
|
|
379 | (1) |
|
|
379 | (1) |
|
Materials Affect Radiation |
|
|
379 | (8) |
|
|
379 | (3) |
|
|
382 | (1) |
|
|
383 | (1) |
|
|
384 | (1) |
|
|
384 | (1) |
|
|
385 | (1) |
|
Neutron Activation Analysis |
|
|
385 | (1) |
|
Neutron Capture-Gamma Ray Analysis |
|
|
386 | (1) |
|
Molecular Structure Determination |
|
|
386 | (1) |
|
|
387 | (1) |
|
Radiation Affects Materials |
|
|
387 | (5) |
|
|
387 | (1) |
|
|
388 | (1) |
|
|
388 | (1) |
|
|
388 | (1) |
|
Biological Mutation Studies |
|
|
388 | (1) |
|
|
389 | (3) |
|
Medical Applications of Nuclear Technology |
|
|
392 | (33) |
|
|
394 | (20) |
|
|
394 | (4) |
|
|
398 | (1) |
|
|
399 | (1) |
|
|
399 | (1) |
|
X-Ray Computed Tomography (CT) |
|
|
400 | (4) |
|
Single Photon Emission Computed Tomography (SPECT) |
|
|
404 | (3) |
|
Positron Emission Tomography (PET) |
|
|
407 | (4) |
|
Magnetic Resonance Imaging (MRI) |
|
|
411 | (3) |
|
|
414 | (2) |
|
|
416 | (1) |
|
|
417 | (1) |
|
|
417 | (8) |
|
|
418 | (1) |
|
|
418 | (2) |
|
|
420 | (1) |
|
|
420 | (1) |
|
Boron Neutron Capture Therapy |
|
|
421 | (4) |
Appendix A: Fundamental Atomic Data |
|
425 | (15) |
Appendix B: Atomic Mass Table |
|
440 | (18) |
Appendix C: Cross Sections and Related Data |
|
458 | (8) |
Appendix D: Decay Characteristics of Selected Radionuclides |
|
466 | (29) |
Index |
|
495 | |