Preface |
|
xv | |
Preface to the First Edition |
|
xvii | |
|
|
1 | (17) |
|
|
1 | (4) |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
5 | (10) |
|
The Fundamental Constituents of Ordinary Matter |
|
|
6 | (2) |
|
|
8 | (1) |
|
Atomic and Nuclear Nomenclature |
|
|
9 | (1) |
|
Atomic and Molecular Weights |
|
|
10 | (1) |
|
|
10 | (2) |
|
|
12 | (1) |
|
|
12 | (1) |
|
|
13 | (1) |
|
Atomic and Isotopic Abundances |
|
|
14 | (1) |
|
|
14 | (1) |
|
|
15 | (3) |
|
Other Sources of Atomic/Nuclear Information |
|
|
15 | (3) |
|
|
18 | (32) |
|
The Special Theory of Relativity |
|
|
18 | (6) |
|
|
20 | (1) |
|
Results of the Special Theory of Relativity |
|
|
21 | (3) |
|
Radiation as Waves and Particles |
|
|
24 | (8) |
|
|
25 | (2) |
|
|
27 | (2) |
|
Electromagnetic Radiation: Wave-Particle Duality |
|
|
29 | (1) |
|
|
30 | (1) |
|
|
31 | (1) |
|
|
32 | (4) |
|
Schrodinger's Wave Equation |
|
|
32 | (2) |
|
|
34 | (1) |
|
The Uncertainty Principle |
|
|
35 | (1) |
|
Success of Quantum Mechanics |
|
|
36 | (1) |
|
Addendum 1: Derivation of Some Special Relativity Results |
|
|
36 | (3) |
|
|
36 | (1) |
|
|
37 | (1) |
|
|
38 | (1) |
|
Addendum 2: Solutions to Schrodinger's Wave Equation |
|
|
39 | (11) |
|
|
39 | (2) |
|
|
41 | (4) |
|
Energy Levels for Multielectron Atoms |
|
|
45 | (5) |
|
|
50 | (23) |
|
Development of the Modern Atom Model |
|
|
50 | (9) |
|
Discovery of Radioactivity |
|
|
50 | (2) |
|
Thomson's Atomic Model: The Plum Pudding Model |
|
|
52 | (1) |
|
The Rutherford Atomic Model |
|
|
53 | (1) |
|
|
54 | (3) |
|
Extension of the Bohr Theory: Elliptic Orbits |
|
|
57 | (1) |
|
The Quantum Mechanical Model of the Atom |
|
|
58 | (1) |
|
|
59 | (14) |
|
Fundamental Properties of the Nucleus |
|
|
59 | (2) |
|
The Proton-Electron Model |
|
|
61 | (1) |
|
|
62 | (2) |
|
|
64 | (2) |
|
The Liquid Drop Model of the Nucleus |
|
|
66 | (4) |
|
|
70 | (1) |
|
|
70 | (3) |
|
|
73 | (15) |
|
|
74 | (4) |
|
Nuclear and Atomic Masses |
|
|
74 | (1) |
|
Binding Energy of the Nucleus |
|
|
75 | (1) |
|
Average Nuclear Binding Energies |
|
|
76 | (2) |
|
Nucleon Separation Energy |
|
|
78 | (2) |
|
|
80 | (1) |
|
Examples of Binary Nuclear Reactions |
|
|
80 | (2) |
|
Multiple Reaction Outcomes |
|
|
81 | (1) |
|
|
82 | (1) |
|
|
83 | (1) |
|
Radioactive Decay Reactions |
|
|
83 | (1) |
|
Conservation of Charge and the Calculation of Q-Values |
|
|
83 | (2) |
|
Special Case for Changes in the Proton Number |
|
|
84 | (1) |
|
Q-Value for Reactions Producing Excited Nuclei |
|
|
85 | (3) |
|
|
88 | (38) |
|
|
88 | (2) |
|
Types of Radioactive Decay |
|
|
90 | (1) |
|
Radioactive Decay Diagrams |
|
|
90 | (3) |
|
Energetics of Radioactive Decay |
|
|
93 | (9) |
|
|
93 | (1) |
|
|
94 | (2) |
|
|
96 | (2) |
|
|
98 | (1) |
|
|
99 | (2) |
|
|
101 | (1) |
|
|
101 | (1) |
|
|
102 | (1) |
|
Characteristics of Radioactive Decay |
|
|
102 | (6) |
|
|
103 | (1) |
|
|
103 | (1) |
|
|
104 | (1) |
|
Decay Probability for a Finite Time Interval |
|
|
105 | (1) |
|
|
105 | (1) |
|
|
105 | (1) |
|
|
106 | (1) |
|
Decay by Competing Processes |
|
|
107 | (1) |
|
|
108 | (6) |
|
|
108 | (1) |
|
Three Component Decay Chains |
|
|
109 | (4) |
|
|
113 | (1) |
|
Naturally Occurring Radionuclides |
|
|
114 | (5) |
|
|
114 | (1) |
|
Singly Occurring Primordial Radionuclides |
|
|
115 | (1) |
|
Decay Series of Primordial Origin |
|
|
115 | (1) |
|
|
116 | (3) |
|
|
119 | (3) |
|
Measuring the Decay of a Parent |
|
|
119 | (1) |
|
Measuring the Buildup of a Stable Daughter |
|
|
120 | (2) |
|
|
122 | (4) |
|
|
126 | (39) |
|
Types of Binary Reactions |
|
|
127 | (1) |
|
|
127 | (1) |
|
Kinematics of Binary Two-Product Nuclear Reactions |
|
|
128 | (4) |
|
|
129 | (1) |
|
Conservation of Energy and Linear Momentum |
|
|
129 | (3) |
|
Reaction Threshold Energy |
|
|
132 | (3) |
|
|
132 | (1) |
|
Coulomb Barrier Threshold |
|
|
133 | (1) |
|
|
134 | (1) |
|
Applications of Binary Kinematics |
|
|
135 | (2) |
|
A Neutron Detection Reaction |
|
|
135 | (1) |
|
A Neutron Production Reaction |
|
|
135 | (1) |
|
Heavy Particle Scattering from an Electron |
|
|
136 | (1) |
|
Reactions Involving Neutrons |
|
|
137 | (5) |
|
|
137 | (3) |
|
Neutron Capture Reactions |
|
|
140 | (1) |
|
|
140 | (2) |
|
Characteristics of the Fission Reaction |
|
|
142 | (11) |
|
|
144 | (2) |
|
Neutron Emission in Fission |
|
|
146 | (4) |
|
Energy Released in Fission |
|
|
150 | (3) |
|
|
153 | (12) |
|
|
153 | (3) |
|
Energy Production in Stars |
|
|
156 | (4) |
|
|
160 | (5) |
|
Radiation Interactions with Matter |
|
|
165 | (41) |
|
Attenuation of Neutral Particle Beams |
|
|
166 | (6) |
|
The Linear Interaction Coefficient |
|
|
167 | (1) |
|
Attenuation of Uncollided Radiation |
|
|
168 | (1) |
|
Average Travel Distance Before an Interaction |
|
|
168 | (1) |
|
|
169 | (1) |
|
|
170 | (1) |
|
Microscopic Cross Sections |
|
|
170 | (2) |
|
Calculation of Radiation Interaction Rates |
|
|
172 | (6) |
|
|
172 | (1) |
|
|
173 | (1) |
|
Generalization to Energy- and Time-Dependent Situations |
|
|
173 | (1) |
|
|
174 | (1) |
|
Uncollided Flux Density from an Isotropic Point Source |
|
|
175 | (3) |
|
|
178 | (4) |
|
|
178 | (1) |
|
|
179 | (2) |
|
|
181 | (1) |
|
Photon Attenuation Coefficients |
|
|
182 | (1) |
|
|
182 | (10) |
|
Classification of Types of Interactions |
|
|
185 | (6) |
|
|
191 | (1) |
|
Attenuation of Charged Particles |
|
|
192 | (14) |
|
|
192 | (2) |
|
|
194 | (2) |
|
|
196 | (3) |
|
Estimating Charged-Particle Ranges |
|
|
199 | (7) |
|
Detection and Measurement of Radiation |
|
|
206 | (49) |
|
|
207 | (14) |
|
|
207 | (3) |
|
|
210 | (3) |
|
|
213 | (6) |
|
|
219 | (2) |
|
|
221 | (11) |
|
|
224 | (3) |
|
|
227 | (2) |
|
|
229 | (3) |
|
|
232 | (7) |
|
|
235 | (1) |
|
|
236 | (2) |
|
Compound Semiconductor Detectors |
|
|
238 | (1) |
|
|
239 | (2) |
|
|
239 | (1) |
|
|
239 | (1) |
|
|
240 | (1) |
|
Other Interesting Detectors |
|
|
241 | (3) |
|
Cloud Chambers, Bubble Chambers, and Superheated Drop Detectors |
|
|
242 | (1) |
|
|
242 | (1) |
|
|
243 | (1) |
|
|
244 | (4) |
|
Types of Measurement Uncertainties |
|
|
244 | (1) |
|
Uncertainty Assignment Based Upon Counting Statistics |
|
|
244 | (3) |
|
|
247 | (1) |
|
|
248 | (7) |
|
|
248 | (1) |
|
|
249 | (1) |
|
|
250 | (1) |
|
|
250 | (1) |
|
Discriminator/Single Channel Analyzer |
|
|
251 | (1) |
|
|
251 | (1) |
|
|
251 | (1) |
|
|
252 | (1) |
|
|
252 | (3) |
|
Radiation Doses and Hazard Assessment |
|
|
255 | (42) |
|
|
255 | (2) |
|
|
257 | (10) |
|
Energy Imparted to the Medium |
|
|
258 | (1) |
|
|
259 | (1) |
|
|
259 | (1) |
|
Calculating Kerma and Absorbed Doses |
|
|
259 | (3) |
|
|
262 | (1) |
|
Relative Biological Effectiveness |
|
|
263 | (1) |
|
|
264 | (1) |
|
|
264 | (1) |
|
Effective Dose Equivalent |
|
|
265 | (1) |
|
|
266 | (1) |
|
Natural Exposures for Humans |
|
|
267 | (2) |
|
Health Effects from Large Acute Doses |
|
|
269 | (6) |
|
Effects on Individual Cells |
|
|
270 | (1) |
|
Deterministic Effects in Organs and Tissues |
|
|
270 | (3) |
|
Potentially Lethal Exposure to Low-LET Radiation |
|
|
273 | (2) |
|
|
275 | (4) |
|
Classification of Genetic Effects |
|
|
276 | (1) |
|
Summary of Risk Estimates |
|
|
276 | (3) |
|
Cancer Risks from Radiation Exposures |
|
|
279 | (5) |
|
Estimating Radiogenic Cancer Risks |
|
|
280 | (1) |
|
Dose-Response Models for Cancer |
|
|
281 | (1) |
|
Average Cancer Risks for Exposed Populations |
|
|
282 | (2) |
|
Probability of Causation Calculations |
|
|
284 | (1) |
|
Radon and Lung Cancer Risks |
|
|
284 | (5) |
|
Radon Activity Concentrations |
|
|
286 | (1) |
|
|
287 | (2) |
|
Radiation Protection Standards |
|
|
289 | (8) |
|
|
289 | (1) |
|
The 1987 NCRP Exposure Limits |
|
|
290 | (7) |
|
Principles of Nuclear Reactors |
|
|
297 | (43) |
|
|
298 | (1) |
|
Thermal-Neutron Properties of Fuels |
|
|
298 | (1) |
|
The Neutron Life Cycle in a Thermal Reactor |
|
|
299 | (8) |
|
Quantification of the Neutron Cycle |
|
|
300 | (4) |
|
Effective Multiplication Factor |
|
|
304 | (3) |
|
Homogeneous and Heterogeneous Cores |
|
|
307 | (2) |
|
|
309 | (1) |
|
|
310 | (9) |
|
A Simple Reactor Kinetics Model |
|
|
310 | (1) |
|
|
311 | (1) |
|
|
312 | (1) |
|
Revised Simplified Reactor Kinetics Models |
|
|
313 | (2) |
|
Power Transients Following a Reactivity Insertion |
|
|
315 | (4) |
|
|
319 | (3) |
|
Feedback Caused by Isotopic Changes |
|
|
319 | (1) |
|
Feedback Caused by Temperature Changes |
|
|
320 | (2) |
|
|
322 | (5) |
|
|
322 | (4) |
|
|
326 | (1) |
|
Addendum 1: The Diffusion Equation |
|
|
327 | (6) |
|
An Example Fixed-Source Problem |
|
|
330 | (1) |
|
An Example Criticality Problem |
|
|
331 | (1) |
|
More Detailed Neutron-Field Descriptions |
|
|
332 | (1) |
|
Addendum 2: Kinetic Model with Delayed Neutrons |
|
|
333 | (2) |
|
Addendum 3: Solution for a Step Reactivity Insertion |
|
|
335 | (5) |
|
|
340 | (48) |
|
|
340 | (8) |
|
Electricity from Thermal Energy |
|
|
341 | (1) |
|
|
341 | (2) |
|
Some Typical Power Reactors |
|
|
343 | (3) |
|
|
346 | (1) |
|
Industrial Infrastructure |
|
|
346 | (1) |
|
Evolution of Nuclear Power Reactors |
|
|
347 | (1) |
|
Generation II Pressurized Water Reactors |
|
|
348 | (7) |
|
|
348 | (1) |
|
Major Components of a PWR |
|
|
348 | (7) |
|
Generation II Boiling Water Reactors |
|
|
355 | (5) |
|
|
355 | (1) |
|
Major Components of a BWR |
|
|
355 | (5) |
|
Generation III Nuclear Reactor Designs |
|
|
360 | (5) |
|
The ABWR and ESBWR Designs |
|
|
360 | (2) |
|
|
362 | (1) |
|
|
362 | (1) |
|
Other Evolutionary LWR Designs |
|
|
363 | (1) |
|
|
364 | (1) |
|
|
364 | (1) |
|
Generation IV Nuclear Reactor Designs |
|
|
365 | (5) |
|
Supercritical Water-Cooled Reactors |
|
|
365 | (2) |
|
Lead-Cooled Fast Reactors |
|
|
367 | (1) |
|
|
368 | (1) |
|
|
369 | (1) |
|
Very High-Temperature Fast Reactors |
|
|
369 | (1) |
|
Sodium-Cooled Fast Reactors |
|
|
369 | (1) |
|
|
370 | (9) |
|
Uranium Requirements and Availability |
|
|
371 | (2) |
|
|
373 | (2) |
|
|
375 | (1) |
|
|
376 | (3) |
|
|
379 | (9) |
|
|
380 | (1) |
|
Other Marine Applications |
|
|
381 | (1) |
|
Nuclear Propulsion in Space |
|
|
382 | (6) |
|
Fusion Reactors and Other Conversion Devices |
|
|
388 | (42) |
|
|
388 | (3) |
|
Energy Production in Plasmas |
|
|
389 | (2) |
|
Magnetically Confined Fusion (MCF) |
|
|
391 | (8) |
|
Fusion Energy Gain Factor |
|
|
391 | (1) |
|
|
392 | (1) |
|
Triple Product Figure-of-Merit |
|
|
393 | (1) |
|
|
394 | (1) |
|
History of Magnetically Confined Fusion Reactors |
|
|
395 | (1) |
|
|
396 | (3) |
|
Inertial Confinement Fusion (ICF) |
|
|
399 | (4) |
|
|
400 | (2) |
|
|
402 | (1) |
|
Prospects for Commercial Fusion Power |
|
|
403 | (1) |
|
Thermoelectric Generators |
|
|
403 | (5) |
|
Radionuclide Thermoelectric Generators |
|
|
405 | (3) |
|
Thermionic Electrical Generators |
|
|
408 | (5) |
|
|
408 | (4) |
|
In-Pile Thermionic Generator |
|
|
412 | (1) |
|
|
413 | (2) |
|
|
415 | (1) |
|
Direct Conversion of Nuclear Radiation |
|
|
416 | (3) |
|
Types of Nuclear Radiation Conversion Devices |
|
|
416 | (2) |
|
|
418 | (1) |
|
Radioisotopes for Thermal Power Sources |
|
|
419 | (2) |
|
|
421 | (9) |
|
The U.S. Space Reactor Program |
|
|
422 | (2) |
|
The Russian Space Reactor Program |
|
|
424 | (6) |
|
Nuclear Technology in Industry and Research |
|
|
430 | (35) |
|
Production of Radioisotopes |
|
|
430 | (1) |
|
Industrial and Research Uses of Radioisotopes and Radiation |
|
|
431 | (2) |
|
|
433 | (3) |
|
|
433 | (1) |
|
|
434 | (1) |
|
|
434 | (1) |
|
|
434 | (1) |
|
|
435 | (1) |
|
|
435 | (1) |
|
|
435 | (1) |
|
|
435 | (1) |
|
|
436 | (1) |
|
|
436 | (1) |
|
Surface Temperature Measurements |
|
|
436 | (1) |
|
|
436 | (1) |
|
Materials Affect Radiation |
|
|
436 | (10) |
|
|
436 | (3) |
|
|
439 | (1) |
|
|
440 | (1) |
|
|
441 | (1) |
|
|
441 | (1) |
|
|
442 | (1) |
|
Neutron Activation Analysis (NAA) |
|
|
442 | (1) |
|
Neutron Capture-Gamma Ray Analysis |
|
|
443 | (1) |
|
X-Ray Fluoresence Analysis |
|
|
443 | (2) |
|
Proton Induced Gamma-Ray Emission (PIGE) |
|
|
445 | (1) |
|
Molecular Structure Determination |
|
|
445 | (1) |
|
|
445 | (1) |
|
Radiation Affects Materials |
|
|
446 | (2) |
|
|
446 | (1) |
|
|
446 | (1) |
|
|
447 | (1) |
|
|
447 | (1) |
|
Biological Mutation Studies |
|
|
447 | (1) |
|
|
447 | (1) |
|
|
448 | (17) |
|
Cockcroft-Walton Accelerator |
|
|
448 | (1) |
|
Van de Graaff Accelerator |
|
|
449 | (2) |
|
|
451 | (2) |
|
|
453 | (2) |
|
The Synchrocyclotron and the Isochronous Cyclotron |
|
|
455 | (1) |
|
|
456 | (2) |
|
|
458 | (7) |
|
Medical Applications of Nuclear Technology |
|
|
465 | (44) |
|
|
467 | (23) |
|
|
467 | (5) |
|
|
472 | (1) |
|
|
473 | (1) |
|
|
473 | (1) |
|
X-Ray Computed Tomography (CT) |
|
|
474 | (6) |
|
|
480 | (1) |
|
Single Photon Emission Computed Tomography (SPECT) |
|
|
480 | (3) |
|
Positron Emission Tomography (PET) |
|
|
483 | (5) |
|
Magnetic Resonance Imaging (MRI) |
|
|
488 | (2) |
|
|
490 | (2) |
|
|
492 | (1) |
|
|
493 | (1) |
|
|
494 | (15) |
|
|
494 | (2) |
|
|
496 | (1) |
|
Accelerator Based Teletherapy |
|
|
496 | (1) |
|
Three Dimensional Conformal Radiation Therapy (CRT) |
|
|
496 | (2) |
|
Intensity Modulated Radiation Therapy |
|
|
498 | (1) |
|
|
498 | (1) |
|
|
499 | (2) |
|
Stereotactic Radiation Therapy |
|
|
501 | (1) |
|
|
501 | (2) |
|
|
503 | (1) |
|
Boron Neutron Capture Therapy |
|
|
503 | (6) |
Fundamental Atomic Data |
|
509 | (15) |
Atomic Mass Table |
|
524 | (18) |
Cross Sections and Related Data |
|
542 | (8) |
Decay Characteristics of Selected Radionuclides |
|
550 | (29) |
Index |
|
579 | |