Muutke küpsiste eelistusi

Fundamentals of Nuclear Science and Engineering Second Edition 2nd New edition [Kõva köide]

(Kansas State University, Manhattan, USA), (Kansas State University, Manhattan, USA)
  • Formaat: Hardback, 616 pages, kõrgus x laius: 246x174 mm, kaal: 1218 g, 71 Tables, black and white; 238 Illustrations, black and white
  • Ilmumisaeg: 01-Dec-2007
  • Kirjastus: CRC Press Inc
  • ISBN-10: 1420051350
  • ISBN-13: 9781420051353
Teised raamatud teemal:
  • Kõva köide
  • Hind: 138,24 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 616 pages, kõrgus x laius: 246x174 mm, kaal: 1218 g, 71 Tables, black and white; 238 Illustrations, black and white
  • Ilmumisaeg: 01-Dec-2007
  • Kirjastus: CRC Press Inc
  • ISBN-10: 1420051350
  • ISBN-13: 9781420051353
Teised raamatud teemal:
Since the publication of the bestselling first edition, there have been numerous advances in the field of nuclear science. In medicine, accelerator based teletherapy and electron-beam therapy have become standard. New demands in national security have stimulated major advances in nuclear instrumentation.An ideal introduction to the fundamentals of nuclear science and engineering, this book presents the basic nuclear science needed to understand and quantify an extensive range of nuclear phenomena. New to the Second Edition

A chapter on radiation detection by Douglas McGregor Up-to-date coverage of radiation hazards, reactor designs, and medical applications Flexible organization of material that allows for quick reference This edition also takes an in-depth look at particle accelerators, nuclear fusion reactions and devices, and nuclear technology in medical diagnostics and treatment. In addition, the author discusses applications such as the direct conversion of nuclear energy into electricity. The breadth of coverage is unparalleled, ranging from the theory and design characteristics of nuclear reactors to the identification of biological risks associated with ionizing radiation. All topics are supplemented with extensive nuclear data compilations to perform a wealth of calculations.

Providing extensive coverage of physics, nuclear science, and nuclear technology of all types, this up-to-date second edition of Fundamentals of Nuclear Science and Engineering is a key reference for any physicists or engineer.
Preface xv
Preface to the First Edition xvii
Fundamental Concepts
1(17)
Modern Units
1(4)
Special Nuclear Units
4(1)
Physical Constants
5(1)
The Atom
5(10)
The Fundamental Constituents of Ordinary Matter
6(2)
Dark Matter and Energy
8(1)
Atomic and Nuclear Nomenclature
9(1)
Atomic and Molecular Weights
10(1)
Avogadro's Number
10(2)
Mass of an Atom
12(1)
Atomic Number Density
12(1)
Size of an Atom
13(1)
Atomic and Isotopic Abundances
14(1)
Nuclear Dimensions
14(1)
Chart of the Nuclides
15(3)
Other Sources of Atomic/Nuclear Information
15(3)
Modern Physics Concepts
18(32)
The Special Theory of Relativity
18(6)
Principle of Relativity
20(1)
Results of the Special Theory of Relativity
21(3)
Radiation as Waves and Particles
24(8)
The Photoelectric Effect
25(2)
Compton Scattering
27(2)
Electromagnetic Radiation: Wave-Particle Duality
29(1)
Electron Scattering
30(1)
Wave-Particle Duality
31(1)
Quantum Mechanics
32(4)
Schrodinger's Wave Equation
32(2)
The Wave Function
34(1)
The Uncertainty Principle
35(1)
Success of Quantum Mechanics
36(1)
Addendum 1: Derivation of Some Special Relativity Results
36(3)
Time Dilation
36(1)
Length Contraction
37(1)
Mass Increase
38(1)
Addendum 2: Solutions to Schrodinger's Wave Equation
39(11)
The Particle in a Box
39(2)
The Hydrogen Atom
41(4)
Energy Levels for Multielectron Atoms
45(5)
Atomic/Nuclear Models
50(23)
Development of the Modern Atom Model
50(9)
Discovery of Radioactivity
50(2)
Thomson's Atomic Model: The Plum Pudding Model
52(1)
The Rutherford Atomic Model
53(1)
The Bohr Atomic Model
54(3)
Extension of the Bohr Theory: Elliptic Orbits
57(1)
The Quantum Mechanical Model of the Atom
58(1)
Models of the Nucleus
59(14)
Fundamental Properties of the Nucleus
59(2)
The Proton-Electron Model
61(1)
The Proton-Neutron Model
62(2)
Stability of Nuclei
64(2)
The Liquid Drop Model of the Nucleus
66(4)
The Nuclear Shell Model
70(1)
Other Nuclear Models
70(3)
Nuclear Energetics
73(15)
Binding Energy
74(4)
Nuclear and Atomic Masses
74(1)
Binding Energy of the Nucleus
75(1)
Average Nuclear Binding Energies
76(2)
Nucleon Separation Energy
78(2)
Nuclear Reactions
80(1)
Examples of Binary Nuclear Reactions
80(2)
Multiple Reaction Outcomes
81(1)
Q-Value for a Reaction
82(1)
Binary Reactions
83(1)
Radioactive Decay Reactions
83(1)
Conservation of Charge and the Calculation of Q-Values
83(2)
Special Case for Changes in the Proton Number
84(1)
Q-Value for Reactions Producing Excited Nuclei
85(3)
Radioactivity
88(38)
Overview
88(2)
Types of Radioactive Decay
90(1)
Radioactive Decay Diagrams
90(3)
Energetics of Radioactive Decay
93(9)
Gamma Decay
93(1)
Alpha-Particle Decay
94(2)
Beta-Particle Decay
96(2)
Positron Decay
98(1)
Electron Capture
99(2)
Neutron Decay
101(1)
Proton Decay
101(1)
Internal Conversion
102(1)
Characteristics of Radioactive Decay
102(6)
The Decay Constant
103(1)
Exponential Decay
103(1)
The Half-Life
104(1)
Decay Probability for a Finite Time Interval
105(1)
Mean Lifetime
105(1)
Activity
105(1)
Half-Life Measurement
106(1)
Decay by Competing Processes
107(1)
Decay Dynamics
108(6)
Decay with Production
108(1)
Three Component Decay Chains
109(4)
General Decay Chain
113(1)
Naturally Occurring Radionuclides
114(5)
Cosmogenic Radionuclides
114(1)
Singly Occurring Primordial Radionuclides
115(1)
Decay Series of Primordial Origin
115(1)
Secular Equilibrium
116(3)
Radiodating
119(3)
Measuring the Decay of a Parent
119(1)
Measuring the Buildup of a Stable Daughter
120(2)
Radioactive Decay Data
122(4)
Binary Nuclear Reactions
126(39)
Types of Binary Reactions
127(1)
The Compound Nucleus
127(1)
Kinematics of Binary Two-Product Nuclear Reactions
128(4)
Energy/Mass Conservation
129(1)
Conservation of Energy and Linear Momentum
129(3)
Reaction Threshold Energy
132(3)
Kinematic Threshold
132(1)
Coulomb Barrier Threshold
133(1)
Overall Threshold Energy
134(1)
Applications of Binary Kinematics
135(2)
A Neutron Detection Reaction
135(1)
A Neutron Production Reaction
135(1)
Heavy Particle Scattering from an Electron
136(1)
Reactions Involving Neutrons
137(5)
Neutron Scattering
137(3)
Neutron Capture Reactions
140(1)
Fission Reactions
140(2)
Characteristics of the Fission Reaction
142(11)
Fission Products
144(2)
Neutron Emission in Fission
146(4)
Energy Released in Fission
150(3)
Fusion Reactions
153(12)
Thermonuclear Fusion
153(3)
Energy Production in Stars
156(4)
Nucleogenesis
160(5)
Radiation Interactions with Matter
165(41)
Attenuation of Neutral Particle Beams
166(6)
The Linear Interaction Coefficient
167(1)
Attenuation of Uncollided Radiation
168(1)
Average Travel Distance Before an Interaction
168(1)
Half-Thickness
169(1)
Scattered Radiation
170(1)
Microscopic Cross Sections
170(2)
Calculation of Radiation Interaction Rates
172(6)
Flux Density
172(1)
Reaction-Rate Density
173(1)
Generalization to Energy- and Time-Dependent Situations
173(1)
Radiation Fluence
174(1)
Uncollided Flux Density from an Isotropic Point Source
175(3)
Photon Interactions
178(4)
Photoelectric Effect
178(1)
Compton Scattering
179(2)
Pair Production
181(1)
Photon Attenuation Coefficients
182(1)
Neutron Interactions
182(10)
Classification of Types of Interactions
185(6)
Fission Cross Sections
191(1)
Attenuation of Charged Particles
192(14)
Interaction Mechanisms
192(2)
Particle Range
194(2)
Stopping Power
196(3)
Estimating Charged-Particle Ranges
199(7)
Detection and Measurement of Radiation
206(49)
Gas-Filled Detectors
207(14)
General Operation
207(3)
Ion Chambers
210(3)
Proportional Counters
213(6)
Geiger-Muller Counters
219(2)
Scintillation Detectors
221(11)
Inorganic Scintillators
224(3)
Organic Scintillators
227(2)
Light Collection
229(3)
Semiconductor Detectors
232(7)
Ge Detectors
235(1)
Si Detectors
236(2)
Compound Semiconductor Detectors
238(1)
Personal Dosimeters
239(2)
Photographic Film
239(1)
Pocket Ion Chambers
239(1)
TLDs and OSLs
240(1)
Other Interesting Detectors
241(3)
Cloud Chambers, Bubble Chambers, and Superheated Drop Detectors
242(1)
Cryogenic Detectors
242(1)
Amanda and IceCube
243(1)
Measurement Theory
244(4)
Types of Measurement Uncertainties
244(1)
Uncertainty Assignment Based Upon Counting Statistics
244(3)
Dead Time
247(1)
Detection Equipment
248(7)
Power Supply
248(1)
Preamplifier
249(1)
Amplifier
250(1)
Oscilloscope
250(1)
Discriminator/Single Channel Analyzer
251(1)
Counter/Timer
251(1)
Multichannel Analyzer
251(1)
Pulser
252(1)
Other NIM Components
252(3)
Radiation Doses and Hazard Assessment
255(42)
Historical Roots
255(2)
Dosimetric Quantities
257(10)
Energy Imparted to the Medium
258(1)
Absorbed Dose
259(1)
Kerma
259(1)
Calculating Kerma and Absorbed Doses
259(3)
Exposure
262(1)
Relative Biological Effectiveness
263(1)
Dose Equivalent
264(1)
Quality Factor
264(1)
Effective Dose Equivalent
265(1)
Effective Dose
266(1)
Natural Exposures for Humans
267(2)
Health Effects from Large Acute Doses
269(6)
Effects on Individual Cells
270(1)
Deterministic Effects in Organs and Tissues
270(3)
Potentially Lethal Exposure to Low-LET Radiation
273(2)
Hereditary Effects
275(4)
Classification of Genetic Effects
276(1)
Summary of Risk Estimates
276(3)
Cancer Risks from Radiation Exposures
279(5)
Estimating Radiogenic Cancer Risks
280(1)
Dose-Response Models for Cancer
281(1)
Average Cancer Risks for Exposed Populations
282(2)
Probability of Causation Calculations
284(1)
Radon and Lung Cancer Risks
284(5)
Radon Activity Concentrations
286(1)
Lung Cancer Risks
287(2)
Radiation Protection Standards
289(8)
Risk-Related Dose Limits
289(1)
The 1987 NCRP Exposure Limits
290(7)
Principles of Nuclear Reactors
297(43)
Neutron Moderation
298(1)
Thermal-Neutron Properties of Fuels
298(1)
The Neutron Life Cycle in a Thermal Reactor
299(8)
Quantification of the Neutron Cycle
300(4)
Effective Multiplication Factor
304(3)
Homogeneous and Heterogeneous Cores
307(2)
Reflectors
309(1)
Reactor Kinetics
310(9)
A Simple Reactor Kinetics Model
310(1)
Delayed Neutrons
311(1)
Reactivity and Delta-k
312(1)
Revised Simplified Reactor Kinetics Models
313(2)
Power Transients Following a Reactivity Insertion
315(4)
Reactivity Feedback
319(3)
Feedback Caused by Isotopic Changes
319(1)
Feedback Caused by Temperature Changes
320(2)
Fission Product Poisons
322(5)
Xenon Poisoning
322(4)
Samarium Poisoning
326(1)
Addendum 1: The Diffusion Equation
327(6)
An Example Fixed-Source Problem
330(1)
An Example Criticality Problem
331(1)
More Detailed Neutron-Field Descriptions
332(1)
Addendum 2: Kinetic Model with Delayed Neutrons
333(2)
Addendum 3: Solution for a Step Reactivity Insertion
335(5)
Nuclear Power
340(48)
Nuclear Electric Power
340(8)
Electricity from Thermal Energy
341(1)
Conversion Efficiency
341(2)
Some Typical Power Reactors
343(3)
Coolant Limitations
346(1)
Industrial Infrastructure
346(1)
Evolution of Nuclear Power Reactors
347(1)
Generation II Pressurized Water Reactors
348(7)
The Steam Cycle of a PWR
348(1)
Major Components of a PWR
348(7)
Generation II Boiling Water Reactors
355(5)
The Steam Cycle of a BWR
355(1)
Major Components of a BWR
355(5)
Generation III Nuclear Reactor Designs
360(5)
The ABWR and ESBWR Designs
360(2)
The System 80+ Design
362(1)
AP600 and AP1000 Designs
362(1)
Other Evolutionary LWR Designs
363(1)
Heavy Water Reactors
364(1)
Gas-Cooled Reactors
364(1)
Generation IV Nuclear Reactor Designs
365(5)
Supercritical Water-Cooled Reactors
365(2)
Lead-Cooled Fast Reactors
367(1)
Molten-Salt Reactors
368(1)
Gas-Cooled Fast Reactors
369(1)
Very High-Temperature Fast Reactors
369(1)
Sodium-Cooled Fast Reactors
369(1)
The Nuclear Fuel Cycle
370(9)
Uranium Requirements and Availability
371(2)
Enrichment Techniques
373(2)
Radioactive Waste
375(1)
Spent Fuel
376(3)
Nuclear Propulsion
379(9)
Naval Applications
380(1)
Other Marine Applications
381(1)
Nuclear Propulsion in Space
382(6)
Fusion Reactors and Other Conversion Devices
388(42)
Fusion Reactors
388(3)
Energy Production in Plasmas
389(2)
Magnetically Confined Fusion (MCF)
391(8)
Fusion Energy Gain Factor
391(1)
Confinement Times
392(1)
Triple Product Figure-of-Merit
393(1)
Plasma Heating
394(1)
History of Magnetically Confined Fusion Reactors
395(1)
The ITER Fusion Reactor
396(3)
Inertial Confinement Fusion (ICF)
399(4)
History of ICF
400(2)
ICF Technical Problems
402(1)
Prospects for Commercial Fusion Power
403(1)
Thermoelectric Generators
403(5)
Radionuclide Thermoelectric Generators
405(3)
Thermionic Electrical Generators
408(5)
Conversion Efficiency
408(4)
In-Pile Thermionic Generator
412(1)
AMTEC Conversion
413(2)
Stirling Converters
415(1)
Direct Conversion of Nuclear Radiation
416(3)
Types of Nuclear Radiation Conversion Devices
416(2)
Betavoltaic Batteries
418(1)
Radioisotopes for Thermal Power Sources
419(2)
Space Reactors
421(9)
The U.S. Space Reactor Program
422(2)
The Russian Space Reactor Program
424(6)
Nuclear Technology in Industry and Research
430(35)
Production of Radioisotopes
430(1)
Industrial and Research Uses of Radioisotopes and Radiation
431(2)
Tracer Applications
433(3)
Leak Detection
433(1)
Pipeline Interfaces
434(1)
Flow Patterns
434(1)
Flow Rate Measurements
434(1)
Labeled Reagents
435(1)
Tracer Dilution
435(1)
Wear Analyses
435(1)
Mixing Times
435(1)
Residence Times
436(1)
Frequency Response
436(1)
Surface Temperature Measurements
436(1)
Radiodating
436(1)
Materials Affect Radiation
436(10)
Radiography
436(3)
Thickness Gauging
439(1)
Density Gauges
440(1)
Level Gauges
441(1)
Radiation Absorptiometry
441(1)
Oil-Well Logging
442(1)
Neutron Activation Analysis (NAA)
442(1)
Neutron Capture-Gamma Ray Analysis
443(1)
X-Ray Fluoresence Analysis
443(2)
Proton Induced Gamma-Ray Emission (PIGE)
445(1)
Molecular Structure Determination
445(1)
Smoke Detectors
445(1)
Radiation Affects Materials
446(2)
Food Preservation
446(1)
Sterilization
446(1)
Insect Control
447(1)
Polymer Modification
447(1)
Biological Mutation Studies
447(1)
Chemonuclear Processing
447(1)
Particle Accelerators
448(17)
Cockcroft-Walton Accelerator
448(1)
Van de Graaff Accelerator
449(2)
Linear Accelerators
451(2)
The Cyclotron
453(2)
The Synchrocyclotron and the Isochronous Cyclotron
455(1)
Proton Synchrotrons
456(2)
Betatron
458(7)
Medical Applications of Nuclear Technology
465(44)
Diagnostic Imaging
467(23)
X-Ray Projection Imaging
467(5)
Fluoroscopy
472(1)
Mammography
473(1)
Bone Densitometry
473(1)
X-Ray Computed Tomography (CT)
474(6)
CT Detector Technology
480(1)
Single Photon Emission Computed Tomography (SPECT)
480(3)
Positron Emission Tomography (PET)
483(5)
Magnetic Resonance Imaging (MRI)
488(2)
Radioimmunoassay
490(2)
Diagnostic Radiotracers
492(1)
Radioimmunoscintigraphy
493(1)
Radiation Therapy
494(15)
Early Applications
494(2)
Early Teletherapy
496(1)
Accelerator Based Teletherapy
496(1)
Three Dimensional Conformal Radiation Therapy (CRT)
496(2)
Intensity Modulated Radiation Therapy
498(1)
Electron Beam Therapy
498(1)
Proton Beam Therapy
499(2)
Stereotactic Radiation Therapy
501(1)
Clinical Brachytherapy
501(2)
Radionuclide Therapy
503(1)
Boron Neutron Capture Therapy
503(6)
Fundamental Atomic Data 509(15)
Atomic Mass Table 524(18)
Cross Sections and Related Data 542(8)
Decay Characteristics of Selected Radionuclides 550(29)
Index 579