Muutke küpsiste eelistusi

Fundamentals of Physics II: Electromagnetism, Optics, and Quantum Mechanics Expanded Edition [Pehme köide]

  • Formaat: Paperback / softback, 680 pages, kõrgus x laius x paksus: 235x156x35 mm, 166 b-w illus.
  • Sari: The Open Yale Courses
  • Ilmumisaeg: 23-Jun-2020
  • Kirjastus: Yale University Press
  • ISBN-10: 0300243782
  • ISBN-13: 9780300243789
  • Pehme köide
  • Hind: 33,94 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 39,92 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 680 pages, kõrgus x laius x paksus: 235x156x35 mm, 166 b-w illus.
  • Sari: The Open Yale Courses
  • Ilmumisaeg: 23-Jun-2020
  • Kirjastus: Yale University Press
  • ISBN-10: 0300243782
  • ISBN-13: 9780300243789
A beloved introductory physics textbook, now including exercises and an answer key, accessibly explains electromagnetism, optics, and quantum mechanics

R. Shankar is a well-known physicist and contagiously enthusiastic educator, whose popular online introductory-physics video lectures have been viewed over a million times. In this second book based on his online courses, Shankar explains electromagnetism, optics, and quantum mechanics, developing the basics and reinforcing the fundamentals. With the help of problem sets and answer keys, students learn about the most interesting findings of today&;s research while gaining a firm foundation in the principles and methods of physics.


A beloved introductory physics textbook, now including exercises and an answer key, accessibly explains electromagnetism, optics, and quantum mechanics
Preface to the Expanded Edition xv
Preface to the First Edition xvi
1 Electrostatics I
1(18)
1.1 Review of F = ma
1(2)
1.2 Enter electricity
3(5)
1.3 Coulomb's law
8(2)
1.4 Properties of charge
10(3)
1.4.1 Superposition principle
12(1)
1.5 Verifying Coulomb's law
13(2)
1.6 The ratio of gravitational to electric forces
15(2)
1.7 Coulomb's law for continuous charge density
17(2)
2 The Electric Field
19(23)
2.1 Review of key ideas
19(1)
2.2 Digression on nuclear forces
20(2)
2.3 The electric field E
22(3)
2.4 Visualizing the field
25(8)
2.5 Field of a dipole
33(5)
2.5.1 Far field of dipole: general case
36(2)
2.6 Response to a field
38(4)
2.6.1 Dipole in a uniform field
39(3)
3 Gauss's Law I
42(23)
3.1 Field of an infinite line charge
43(4)
3.2 Field of an infinite sheet of charge
47(5)
3.3 Spherical charge distribution: Gauss's law
52(1)
3.4 Digression on the area vector dA
53(6)
3.4.1 Composition of areas
55(2)
3.4.2 An application of the area vector
57(2)
3.5 Gauss's law through pictures
59(6)
3.5.1 Continuous charge density
64(1)
4 Gauss's Law II: Applications
65(16)
4.1 Applications of Gauss's law
66(3)
4.2 Field inside a shell
69(3)
4.3 Field of an infinite charged wire, redux
72(2)
4.4 Field of an infinite plane, redux
74(1)
4.5 Conductors
75(6)
4.5.1 Field inside a perfect conductor is zero
76(1)
4.5.2 The net charge on a conductor will reside at the surface
77(1)
4.5.3 A conductor with a hole inside
78(1)
4.5.4 Field on the surface of a conductor
79(2)
5 The Coulomb Potential
81(16)
5.1 Conservative forces and potential energy
82(6)
5.2 Is the electrostatic field conservative?
88(4)
5.3 Path independence through pictures
92(1)
5.4 Potential and field of a dipole
93(4)
6 Conductors and Capacitors
97(22)
6.1 Cases where computing V from E is easier
99(2)
6.2 Visualizing V
101(2)
6.3 Equipotentials
103(1)
6.4 Method of images
104(9)
6.4.1 Proof of uniqueness (optional section)
110(2)
6.4.2 Additional properties of the potential V(r)
112(1)
6.5 Capacitors
113(2)
6.6 Energy stored in a capacitor
115(1)
6.7 Energy of a charge distribution
116(3)
7 Circuits and Currents
119(23)
7.1 Energy in the electric field
120(1)
7.2 Circuits and conductivity
121(5)
7.3 Circuits
126(4)
7.4 The battery and the emf ε
130(5)
7.5 The RC circuit with a battery
135(3)
7.6 Miscellaneous circuits
138(4)
8 Magnetism I
142(16)
8.1 Experiments pointing to magnetism
142(5)
8.2 Examples of the Lorentz force, the cyclotron
147(4)
8.3 Lorentz force on current-carrying wires
151(3)
8.4 The magnetic dipole
154(2)
8.5 The DC motor
156(2)
9 Magnetism II: Biot-Savart Law
158(16)
9.1 Practice with Biot-Savart: field of a loop
160(2)
9.2 Microscopic description of a bar magnet
162(2)
9.3 Magnetic field of an infinite wire
164(3)
9.4 Ampere's law
167(5)
9.5 Maxwell's equations (static case)
172(2)
10 Ampere II, Faraday, and Lenz
174(26)
10.1 Field of an infinite wire, redux
175(4)
10.2 Field of a solenoid
179(5)
10.3 Faraday and Lenz
184(11)
10.4 Optional digression on Faraday's law
195(5)
11 More Faraday
200(20)
11.1 Betatron
200(5)
11.2 Generators
205(3)
11.3 Inductance
208(3)
11.4 Mutual inductance
211(3)
11.5 Self-inductance
214(3)
11.6 Energy in the magnetic field
217(3)
12 AC Circuits
220(24)
12.1 Review of inductors
220(6)
12.2 The LC circuit
226(5)
12.2.1 Driven LC circuit
229(2)
12.3 The LCR circuit
231(10)
12.3.1 Review of complex numbers
231(5)
12.3.2 Solving the LCR equation
236(3)
12.3.3 Visualizing Z
239(2)
12.4 Complex form of Ohm's law
241(3)
13 LCR Circuits and Displacement Current
244(19)
13.1 Analysis of LCR results
246(7)
13.1.1 Transients and the complementary solution
251(2)
13.2 Power of the complex numbers
253(6)
13.3 Displacement current
259(4)
14 Electromagnetic Waves
263(37)
14.1 The wave equation
266(4)
14.2 Restricted Maxwell equations in vacuum
270(5)
14.2.1 Maxwell equations involving infinitesimal cubes
270(2)
14.2.2 Maxwell equations involving infinitesimal loops
272(3)
14.3 The wave!
275(2)
14.4 Sinusoidal solution to the wave equation
277(6)
14.5 Energy in the electromagnetic wave
283(2)
14.6 Origin of electromagnetic waves
285(1)
14.7 Maxwell equations---the general case (optional)
286(8)
14.7.1 Maxwell equations involving infinitesimal cubes
286(2)
14.7.2 Maxwell equations involving infinitesimal loops
288(5)
14.7.3 Consequences for the restricted E and B
293(1)
14.8 From microscopic to macroscopic (optional)
294(6)
14.8.1 Maxwell equations involving cubes
295(2)
14.8.2 Maxwell equations involving loops
297(3)
15 Electromagnetism and Relativity
300(36)
15.1 Magnetism from Coulomb's law and relativity
301(4)
15.2 Relativistic invariance of electrodynamics
305(1)
15.3 Review of Lorentz transformations
305(4)
15.3.1 Implications for Newtonian mechanics
307(2)
15.4 Scalar and vector fields
309(3)
15.5 The derivative operator
312(3)
15.6 Lorentz scalars and vectors
315(2)
15.7 The four-current
317(2)
15.7.1 Charge conservation and the four-current
318(1)
15.8 The four-potential A
319(5)
15.8.1 Gauge invariance
322(2)
15.9 Wave equation for the four-vector A
324(4)
15.9.1 Why work with V and A?
327(1)
15.10 The electromagnetic tensor T
328(8)
15.10.1 Tensors
328(4)
15.10.2 The electromagnetic field tensor T
332(4)
16 Optics I: Geometric Optics Revisited
336(19)
16.1 Geometric or ray optics
336(2)
16.2 Brief history of c
338(2)
16.3 Some highlights of geometric optics
340(3)
16.4 The law of reflection from Fermat's principle
343(1)
16.5 Snell's law from Fermat's principle
344(2)
16.6 Reflection off a curved surface by Fermat
346(3)
16.7 Elliptical mirrors and Fermat's principle
349(3)
16.8 Parabolic mirrors
352(3)
17 Optics II: More Mirrors and Lenses
355(22)
17.1 Spherical approximations to parabolic mirrors
355(2)
17.2 Image formation: geometric optics
357(3)
17.2.1 A midlife crisis
359(1)
17.3 Image formation by Fermat's principle
360(4)
17.4 Tricky cases
364(4)
17.4.1 Fermat's principle for virtual focal points
365(1)
17.4.2 Ray optics for virtual images
366(2)
17.5 Lenses a la Fermat
368(2)
17.6 Principle of least action
370(2)
17.7 The eye
372(5)
18 Wave Theory of Light
377(29)
18.1 Interference of waves
381(2)
18.2 Adding waves using real numbers
383(2)
18.3 Adding waves with complex numbers
385(3)
18.4 Analysis of interference
388(6)
18.5 Diffraction grating
394(3)
18.6 Single-slit diffraction
397(1)
18.7 Understanding reflection and crystal diffraction
398(3)
18.8 Light incident on an oil slick
401(5)
18.8.1 Normal incidence
401(3)
18.8.2 Oblique incidence
404(2)
19 Quantum Mechanics: The Main Experiment
406(36)
19.1 Double-slit experiment with light
407(1)
19.2 Trouble with Maxwell
407(5)
19.3 Digression on photons
412(4)
19.3.1 Photoelectric effect
412(2)
19.3.2 Compton effect
414(2)
19.4 Matter waves
416(4)
19.5 Photons versus electrons
420(2)
19.6 The Heisenberg uncertainty principle
422(8)
19.6.1 There are no states of well-defined position and momentum
423(4)
19.6.2 Heisenberg microscope
427(3)
19.7 Let there be light
430(5)
19.8 The wave function ψ
435(3)
19.9 Collapse of the wave function
438(1)
19.10 Summary
439(3)
20 The Wave Function and Its Interpretation
442(18)
20.1 Probability in classical and quantum mechanics
446(5)
20.2 Getting to know ψ
451(5)
20.3 Statistical concepts: mean and uncertainty
456(4)
21 Quantization and Measurement
460(35)
21.1 More on momentum states
462(2)
21.2 Single-valuedness and quantization of momentum
464(5)
21.2.1 Quantization
467(1)
21.2.2 The integral of ψp(x)
468(1)
21.3 Measurement postulate: momentum
469(11)
21.3.1 An example solvable by inspection
476(2)
21.3.2 Using a normalized ψ
478(2)
21.4 Finding A(p) by computation
480(6)
21.5 More on Fourier's theorems
486(5)
21.6 Measurement postulate: general
491(2)
21.7 More than one variable
493(2)
22 States of Definite Energy
495(29)
22.1 Free particle on a ring
500(7)
22.1.1 Analysis of energy levels: degeneracy
503(4)
22.2 Thinking inside the box
507(14)
22.2.1 Particle in a well
507(9)
22.2.2 The box: an exact solution
516(5)
22.3 Energy measurement in the box
521(3)
23 Scattering and Dynamics
524(26)
23.1 Quantum scattering
524(7)
23.1.1 Scattering for E < V0
526(4)
23.1.2 Scattering for E > V0
530(1)
23.2 Tunneling
531(2)
23.3 Quantum dynamics
533(5)
23.3.1 A solution of the time-dependent Schrodinger equation
535(1)
23.3.2 Derivation of the particular solution ψE(x, t)
536(2)
23.4 Special properties of the product solution
538(3)
23.5 General solution for time evolution
541(9)
23.5.1 Time evolution: a more complicated example
545(5)
24 Summary and Outlook
550(35)
24.1 Postulates: first pass
550(4)
24.2 Refining the postulates
554(11)
24.2.1 Toward a compact set of postulates
555(1)
24.2.2 Eigenvalue problem
556(2)
24.2.3 The Dirac delta function and the operator Χ
558(7)
24.3 Postulates: final
565(1)
24.4 Many particles, bosons, and fermions
566(10)
24.4.1 Identical versus indistinguishable
567(7)
24.4.2 Implications for atomic structure
574(2)
24.5 Energy-time uncertainty principle
576(7)
24.6 What next?
583(2)
Exercises
585(44)
Problem Set 1, for
Chapters 1 and 2
585(3)
Problem Set 2, for
Chapters 3 and 4
588(3)
Problem Set 3, for
Chapters 5 and 6
591(4)
Problem Set 4, for
Chapter 7
595(4)
Problem Set 5, for
Chapters 8 and 9
599(5)
Problem Set 6, for
Chapter 10
604(5)
Problem Set 7, for
Chapters 11, 12, and 13
609(4)
Problem Set 8, for
Chapters 14 and 15
613(4)
Problem Set 9, for
Chapters 16, 17, and 18
617(5)
Problem Set 10, for
Chapters 19 and 20
622(2)
Problem Set 11, for
Chapters 21 and 22
624(2)
Problem Set 12, for
Chapters 23 and 24
626(3)
Answers to Exercises
629(24)
Problem Set 1, for
Chapters 1 and 2
629(2)
Problem Set 2, for
Chapters 3 and 4
631(2)
Problem Set 3, for
Chapters 5 and 6
633(2)
Problem Set 4, for
Chapter 7
635(2)
Problem Set 5, for
Chapters 8 and 9
637(3)
Problem Set 6, for
Chapter 10
640(2)
Problem Set 7, for
Chapters 11, 12, and 13
642(2)
Problem Set 8, for
Chapters 14 and 15
644(2)
Problem Set 9, for
Chapters 16, 17, and 18
646(2)
Problem Set 10, for
Chapters 19 and 20
648(1)
Problem Set 11, for
Chapters 21 and 22
649(1)
Problem Set 12, for
Chapters 23 and 24
650(3)
Constants 653(2)
Index 655
R. Shankar is the Josiah Willard Gibbs Professor of Physics at Yale University. He is the 2009 winner of the American Physical Societys Lilienfeld Prize and the author of four previous popular textbooks.