Preface |
|
xvii | |
Author |
|
xix | |
|
|
1 | (20) |
|
|
1 | (1) |
|
1.2 Basic Principle Of Propulsion |
|
|
2 | (1) |
|
1.3 Brief History Of Rocket Engines |
|
|
2 | (5) |
|
1.4 Classification Of Propulsive Devices |
|
|
7 | (2) |
|
1.4.1 Comparison of Air-Breathing and Rocket Engines |
|
|
8 | (1) |
|
1.5 Types Of Rocket Engines |
|
|
9 | (6) |
|
1.5.1 Chemical Rocket Engines |
|
|
9 | (1) |
|
1.5.1.1 Solid-Propellant Rocket Engines |
|
|
9 | (3) |
|
1.5.1.2 Liquid Propellant Rocket Engines |
|
|
12 | (1) |
|
1.5.1.3 Hybrid Propellant Rocket Engines |
|
|
13 | (2) |
|
1.5.2 Nonchemical Rocket Engines |
|
|
15 | (1) |
|
1.6 Applications Of Rocket Engines |
|
|
15 | (6) |
|
1.6.1 Space Launch Vehicle |
|
|
15 | (1) |
|
|
16 | (1) |
|
|
17 | (1) |
|
1.6.4 Other Civilian Applications |
|
|
18 | (1) |
|
|
18 | (1) |
|
References And Suggested Readings |
|
|
18 | (3) |
|
Chapter 2 Aerothermochemistry of Rocket Engines |
|
|
21 | (48) |
|
|
21 | (1) |
|
2.2 Basic Principles Of Chemical Thermodynamics |
|
|
21 | (1) |
|
|
22 | (1) |
|
|
22 | (5) |
|
2.3.1 First Law of Thermodynamics |
|
|
23 | (1) |
|
2.3.2 First Law for Control Volume |
|
|
24 | (1) |
|
2.3.3 Second Law of Thermodynamics |
|
|
24 | (3) |
|
|
27 | (20) |
|
|
27 | (4) |
|
|
31 | (3) |
|
2.4.3 Heats of Formation and Reaction |
|
|
34 | (3) |
|
2.4.4 Adiabatic Flame Temperature |
|
|
37 | (3) |
|
2.4.5 Chemical Equilibrium |
|
|
40 | (5) |
|
2.4.5.1 Evaluation of Equilibrium Composition of Simultaneous Reactions |
|
|
45 | (2) |
|
2.5 Basic Principles Of Gas Dynamics |
|
|
47 | (22) |
|
2.5.1 Conservation Equations |
|
|
48 | (1) |
|
2.5.2 Steady Quasi-One-Dimensional Flow |
|
|
48 | (2) |
|
2.5.3 Isentropic Flow through Variable Area Duct |
|
|
50 | (1) |
|
2.5.4 Mass Flow Parameter |
|
|
51 | (3) |
|
|
54 | (6) |
|
|
60 | (5) |
|
|
65 | (1) |
|
|
66 | (1) |
|
References And Suggested Readings |
|
|
67 | (2) |
|
Chapter 3 Elements of Rocket Propulsion |
|
|
69 | (22) |
|
|
69 | (1) |
|
|
70 | (1) |
|
3.3 Thrust Equation Of Rocket Engines |
|
|
71 | (5) |
|
3.3.1 Effective Exhaust Velocity |
|
|
72 | (1) |
|
|
73 | (1) |
|
3.3.3 Variation of Thrust with Altitude |
|
|
74 | (1) |
|
3.3.4 Effect of Divergence Angle on Thrust |
|
|
74 | (2) |
|
3.4 Rocket Performance Parameters |
|
|
76 | (15) |
|
3.4.1 Total Impulse and Specific Impulse |
|
|
77 | (1) |
|
3.4.2 Specific Impulse Efficiency |
|
|
78 | (1) |
|
3.4.3 Volumetric Specific Impulse |
|
|
79 | (1) |
|
3.4.4 Mass Flow Coefficient |
|
|
80 | (1) |
|
|
80 | (1) |
|
3.4.6 Specific Propellant Consumption |
|
|
81 | (1) |
|
3.4.7 Characteristic Velocity |
|
|
81 | (1) |
|
3.4.8 Impulse-to-Weight Ratio |
|
|
82 | (2) |
|
3.4.9 Energy Balance and Efficiencies |
|
|
84 | (1) |
|
3.4.9.1 Propulsive Efficiency |
|
|
85 | (1) |
|
3.4.9.2 Thermal Efficiency |
|
|
86 | (1) |
|
3.4.9.3 Overall Efficiency |
|
|
87 | (1) |
|
|
88 | (1) |
|
|
89 | (1) |
|
References And Suggested Reading |
|
|
90 | (1) |
|
|
91 | (38) |
|
|
91 | (1) |
|
4.2 Basics Of CD Nozzle Flow |
|
|
91 | (13) |
|
|
93 | (4) |
|
4.2.2 Mass Flow Rate and Characteristics of Velocity |
|
|
97 | (5) |
|
4.2.3 Expansion Area Ratio |
|
|
102 | (2) |
|
|
104 | (2) |
|
4.4 Effect Of Ambient Pressure |
|
|
106 | (4) |
|
4.4.1 Underexpansion in CD Nozzle |
|
|
107 | (1) |
|
4.4.2 Overexpansion in CD Nozzle |
|
|
108 | (2) |
|
4.5 Advanced Rocket Nozzle |
|
|
110 | (3) |
|
|
110 | (1) |
|
4.5.2 Dual Bell-Shaped Nozzle |
|
|
111 | (1) |
|
4.5.3 Expansion-Deflection Nozzle |
|
|
112 | (1) |
|
|
113 | (1) |
|
4.6 Thrust-Vectoring Nozzles |
|
|
113 | (3) |
|
4.7 Losses In Rocket Nozzle |
|
|
116 | (1) |
|
4.8 Performance Of Exhaust Nozzle |
|
|
117 | (3) |
|
4.8.1 Isentropic Efficiency |
|
|
118 | (1) |
|
4.8.2 Discharge Coefficient |
|
|
119 | (1) |
|
4.8.3 Mass Flow Coefficient |
|
|
119 | (1) |
|
|
120 | (9) |
|
|
123 | (1) |
|
|
124 | (3) |
|
References And Suggested Readings |
|
|
127 | (2) |
|
Chapter 5 Spacecraft Flight Performance |
|
|
129 | (32) |
|
|
129 | (1) |
|
5.2 Forces Acting On A Vehicle |
|
|
130 | (3) |
|
|
130 | (2) |
|
|
132 | (1) |
|
5.2.3 Atmospheric Density |
|
|
132 | (1) |
|
|
133 | (7) |
|
|
138 | (1) |
|
|
138 | (1) |
|
|
139 | (1) |
|
5.4 Space Flight And Its Orbit |
|
|
140 | (7) |
|
|
142 | (2) |
|
5.4.2 Geosynchronous Earth Orbit |
|
|
144 | (1) |
|
5.4.3 Requisite Velocity to Reach an Orbit |
|
|
144 | (2) |
|
|
146 | (1) |
|
5.5 Interplanetary Transfer Path |
|
|
147 | (1) |
|
5.6 Single-Stage Rocket Engines |
|
|
148 | (4) |
|
5.7 Multistage Rocket Engines |
|
|
152 | (9) |
|
|
153 | (3) |
|
|
156 | (2) |
|
|
158 | (2) |
|
References And Suggested Readings |
|
|
160 | (1) |
|
Chapter 6 Chemical Rocket Propellants |
|
|
161 | (34) |
|
|
161 | (1) |
|
6.2 Classification Of Chemical Propellants |
|
|
162 | (1) |
|
6.3 General Characteristics Of Propellants |
|
|
163 | (1) |
|
|
164 | (11) |
|
6.4.1 Homogeneous Solid Propellants |
|
|
165 | (3) |
|
6.4.2 Heterogeneous Propellants |
|
|
168 | (1) |
|
6.4.2.1 Solid Fuel (Binder) |
|
|
168 | (3) |
|
|
171 | (2) |
|
6.4.2.3 Composite Modified Double-Base Propellant |
|
|
173 | (1) |
|
6.4.2.4 Advanced Propellants |
|
|
173 | (2) |
|
|
175 | (13) |
|
|
176 | (1) |
|
6.5.1.1 Hydrocarbon Fuels |
|
|
176 | (2) |
|
|
178 | (1) |
|
|
179 | (1) |
|
6.5.1.4 Hydroxyl Ammonium Nitrate (NH2OH*NO3) |
|
|
180 | (1) |
|
|
180 | (2) |
|
6.5.2.1 Hydrogen Peroxide (H2O2) |
|
|
182 | (1) |
|
6.5.2.2 Nitrogen Tetraoxide (N204) |
|
|
182 | (1) |
|
6.5.2.3 Nitric Acid (HNO3) |
|
|
183 | (1) |
|
|
184 | (1) |
|
|
184 | (1) |
|
6.5.3 Physical and Chemical Properties of Liquid Propellants |
|
|
185 | (1) |
|
6.5.4 Selection of Liquid Propellants |
|
|
186 | (2) |
|
|
188 | (3) |
|
6.6.1 Common Gel Propellants and Gellants |
|
|
189 | (1) |
|
6.6.2 Advantages of Gel Propellants |
|
|
189 | (1) |
|
|
190 | (1) |
|
6.6.2.2 Performance Aspects |
|
|
190 | (1) |
|
|
190 | (1) |
|
6.6.3 Disadvantages of Gel Propellants |
|
|
191 | (1) |
|
|
191 | (4) |
|
|
192 | (1) |
|
References And Suggested Readings |
|
|
193 | (2) |
|
Chapter 7 Solid-Propellant Rocket Engines |
|
|
195 | (66) |
|
|
195 | (2) |
|
|
197 | (1) |
|
7.3 Physical Processes Of Solid-Propellant Burning |
|
|
198 | (1) |
|
7.4 Burning Mechanism Of Solid Propellants |
|
|
199 | (4) |
|
7.4.1 Double-Base Propellants |
|
|
199 | (2) |
|
7.4.2 Composite Propellant Combustion |
|
|
201 | (2) |
|
7.5 Measurement Of Propellant Burning/Regression Rate |
|
|
203 | (15) |
|
7.5.1 Effect of Chamber Pressure on Burning Rate |
|
|
206 | (3) |
|
7.5.2 Effects of Grain Temperature on Burning Rate |
|
|
209 | (2) |
|
7.5.3 Effect of Gas Flow Rate |
|
|
211 | (3) |
|
7.5.4 Effects of Transients on Burning Rate |
|
|
214 | (1) |
|
7.5.5 Effects of Acceleration on Burning Rate |
|
|
215 | (1) |
|
7.5.6 Other Methods of Augmenting Burning Rate |
|
|
216 | (1) |
|
7.5.6.1 Particle Size Effects |
|
|
217 | (1) |
|
7.5.6.2 Burning Rate Modifiers |
|
|
218 | (1) |
|
7.6 Thermal Model For Solid-Propellant Burning |
|
|
218 | (2) |
|
7.7 Solid-Propellant Rocket Engine Operation |
|
|
220 | (5) |
|
7.7.1 Ignition of a Solid Propellant |
|
|
220 | (3) |
|
7.7.2 Action Time and Burn Time |
|
|
223 | (2) |
|
7.8 Internal Ballistics Of SPRE |
|
|
225 | (6) |
|
7.8.1 Stability of SPRE Operation |
|
|
230 | (1) |
|
7.9 Propellant Grain Configuration |
|
|
231 | (2) |
|
7.10 Evolution Of Burning Surface |
|
|
233 | (10) |
|
|
236 | (4) |
|
7.10.1.1 Three-Dimensional Grains |
|
|
240 | (3) |
|
|
243 | (6) |
|
7.11.1 Pyrotechnic Igniter |
|
|
246 | (2) |
|
|
248 | (1) |
|
7.12 Modeling Of Flow In A Side Burning Grain Of Rocket Engine |
|
|
249 | (12) |
|
|
254 | (2) |
|
|
256 | (3) |
|
|
259 | (2) |
|
Chapter 8 Liquid-Propellant Rocket Engines |
|
|
261 | (48) |
|
|
261 | (1) |
|
|
262 | (2) |
|
8.3 Types Of Liquid-Propellant Rocket Engines |
|
|
264 | (3) |
|
8.3.1 Monopropellant Rocket Engines |
|
|
264 | (1) |
|
8.3.2 Bipropellant Rocket Engines |
|
|
265 | (2) |
|
8.4 Combustion Of Liquid Propellants |
|
|
267 | (7) |
|
8.4.1 Hypergolic Propellant Combustion |
|
|
272 | (1) |
|
8.4.1.1 Nonhypergolic Propellant Combustion |
|
|
273 | (1) |
|
8.5 Combustion Chamber Geometry |
|
|
274 | (6) |
|
8.6 Combustion Instabilities In LPRE |
|
|
280 | (10) |
|
8.6.1 Analysis of Bulk Mode Combustion Instability |
|
|
283 | (4) |
|
8.6.2 Control of Combustion Instability |
|
|
287 | (1) |
|
|
287 | (1) |
|
8.6.2.2 Aerodynamic Method |
|
|
287 | (1) |
|
8.6.2.3 Mechanical Method |
|
|
288 | (2) |
|
|
290 | (4) |
|
|
294 | (3) |
|
8.8.1 Regenerative Cooling |
|
|
294 | (1) |
|
|
295 | (1) |
|
|
296 | (1) |
|
8.9 Heat Transfer Analysis For Cooling Systems |
|
|
297 | (12) |
|
|
304 | (2) |
|
|
306 | (1) |
|
|
307 | (2) |
|
Chapter 9 Hybrid Propellant Rocket Engine |
|
|
309 | (24) |
|
|
309 | (1) |
|
|
310 | (1) |
|
|
311 | (1) |
|
|
312 | (1) |
|
9.5 Combustion Of Hybrid Propellants |
|
|
313 | (12) |
|
9.5.1 Effects of Thermal Radiation on Hybrid Propellant Combustion |
|
|
322 | (3) |
|
9.6 Ignition Of Hybrid Propellants |
|
|
325 | (1) |
|
9.7 Combustion Instability In HPRE |
|
|
326 | (7) |
|
9.7.1 Feed System-Coupled Instabilities |
|
|
326 | (1) |
|
|
327 | (1) |
|
9.7.3 Intrinsic Low-Frequency Instabilities |
|
|
328 | (2) |
|
|
330 | (1) |
|
|
330 | (1) |
|
|
331 | (2) |
|
Chapter 10 Liquid-Propellant Injection System |
|
|
333 | (64) |
|
|
333 | (1) |
|
|
334 | (3) |
|
|
337 | (8) |
|
10.3.1 Types of Injectors |
|
|
338 | (1) |
|
10.3.1.1 Nonimpinging Injectors |
|
|
338 | (2) |
|
10.3.1.2 Impinging Injectors |
|
|
340 | (4) |
|
10.3.1.3 Other Types of Injectors |
|
|
344 | (1) |
|
10.4 Design Of Injector Elements |
|
|
345 | (6) |
|
10.5 Performance Of Injector |
|
|
351 | (4) |
|
10.5.1 Droplet Size Distribution |
|
|
351 | (2) |
|
|
353 | (1) |
|
|
354 | (1) |
|
10.6 Injector Distributor |
|
|
355 | (1) |
|
|
356 | (1) |
|
10.8 Liquid-Propellant Feed System |
|
|
357 | (15) |
|
10.8.1 Gas Pressure Feed System |
|
|
358 | (2) |
|
10.8.1.1 Cold Gas Pressure Feed System |
|
|
360 | (3) |
|
10.8.1.2 Hot Gas Pressure Feed System |
|
|
363 | (1) |
|
10.8.1.3 Chemically Generated Gas Feed System |
|
|
364 | (8) |
|
10.9 Turbo-Pump Feed System |
|
|
372 | (25) |
|
10.9.1 Types of Turbo-Pump Feed System |
|
|
372 | (3) |
|
10.9.1.1 Propellant Turbo-Pumps |
|
|
375 | (1) |
|
|
375 | (7) |
|
|
382 | (4) |
|
10.9.2.2 Propellant Turbines |
|
|
386 | (5) |
|
|
391 | (1) |
|
|
392 | (3) |
|
|
395 | (2) |
|
Chapter 11 Nonchemical Rocket Engine |
|
|
397 | (42) |
|
|
397 | (1) |
|
11.2 Basic Principles Of Electrical Rocket Engine |
|
|
398 | (7) |
|
11.2.1 Classifications of Electrical Rockets |
|
|
398 | (1) |
|
11.2.2 Background Physics of Electrical Rockets |
|
|
399 | (1) |
|
11.2.2.1 Electrostatic and Electromagnetic Forces |
|
|
399 | (4) |
|
|
403 | (1) |
|
11.2.2.3 Electric Discharge Behavior |
|
|
403 | (2) |
|
11.3 Electrothermal Thrusters |
|
|
405 | (8) |
|
|
405 | (6) |
|
|
411 | (2) |
|
11.4 Electrostatic Thrusters |
|
|
413 | (10) |
|
11.4.1 Basic Principles of Electrostatic Thrusters |
|
|
415 | (5) |
|
|
420 | (1) |
|
11.4.3 Performance of Ion Thruster |
|
|
420 | (3) |
|
11.5 Electromagnetic Thruster |
|
|
423 | (7) |
|
11.5.1 Basic Principles of Electromagnetic Thruster |
|
|
423 | (1) |
|
11.5.2 Types of Plasma Thruster |
|
|
424 | (1) |
|
11.5.2.1 Magnetoplasmadynamic Thrusters |
|
|
425 | (2) |
|
11.5.2.2 Pulsed Plasma Thruster |
|
|
427 | (1) |
|
11.5.2.3 Hall Effect Thruster |
|
|
428 | (2) |
|
11.6 Nuclear Rocket Engines |
|
|
430 | (3) |
|
11.7 Solar Energy Rockets |
|
|
433 | (6) |
|
|
435 | (1) |
|
|
436 | (2) |
|
|
438 | (1) |
Appendices |
|
439 | (12) |
Index |
|
451 | |