Muutke küpsiste eelistusi

Fundamentals of Semiconductor Devices 2nd edition [Kõva köide]

  • Formaat: Hardback, 832 pages, kõrgus x laius x paksus: 239x196x33 mm, kaal: 1302 g, 375 Illustrations
  • Ilmumisaeg: 16-Apr-2017
  • Kirjastus: McGraw-Hill Inc.,US
  • ISBN-10: 0073529567
  • ISBN-13: 9780073529561
  • Formaat: Hardback, 832 pages, kõrgus x laius x paksus: 239x196x33 mm, kaal: 1302 g, 375 Illustrations
  • Ilmumisaeg: 16-Apr-2017
  • Kirjastus: McGraw-Hill Inc.,US
  • ISBN-10: 0073529567
  • ISBN-13: 9780073529561

Fundamentals of Semiconductor Devices provides a realistic and practical treatment of modern semiconductor devices. A solid understanding of the physical processes responsible for the electronic properties of semiconductor materials and devices is emphasized. With this emphasis, the reader will appreciate the underlying physics behind the equations derived and their range of applicability. The author’s clear writing style, comprehensive coverage of the core material, and attention to current topics are key strengths of this book.

Preface xii
PART 1 Materials
1(179)
Chapter 1 Electron Energy and States in Semiconductors
3(45)
1.1 Introduction and Preview
3(1)
1.2 A Brief History
4(1)
1.3 Application to the Hydrogen Atom
5(16)
1.3.1 The Bohr Model for The Hydrogen Atom
5(6)
1.3.2 Application to Molecules: Covalent Bonding
11(2)
1.3.3 Quantum Numbers and the Pauli Exclusion Principle
13(1)
1.3.4 Covalent Bonding in Crystalline Solids
14(7)
1.4 Wave-Particle Duality
21(1)
1.5 The Wave Function
22(1)
1.5.1 Probability and the Wave Function
22(1)
1.6 The Electron Wave Function
23(10)
1.6.1 The Free Electron in One Dimension
23(3)
1.6.2 The De Broglie Relationship
26(1)
1.6.3 The Free Electron in Three Dimensions
27(1)
1.6.4 The Quasi-Free Electron Model
28(4)
1.6.5 Reflection and Tunneling
32(1)
1.7 A First Look at Optical Emission and Absorption
33(6)
1.8 Crystal Structures, Planes, and Directions
39(2)
1.9 Summary
41(1)
1.10 References
42(1)
1.11 Review Questions
42(1)
1.12 Problems
43(5)
Chapter 2 Homogeneous Semiconductors
48(65)
2.1 Introduction and Preview
48(1)
2.2 Pseudo-Classical Mechanics for Electrons in Crystals
49(8)
2.2.1 One-Dimensional Crystals
49(6)
2.2.2 Three-Dimensional Crystals
55(2)
2.3 Conduction Band Structure
57(1)
2.4 Valence Band Structure
58(2)
2.5 Intrinsic Semiconductors
60(2)
2.6 Extrinsic Semiconductors
62(6)
2.6.1 Donors
62(4)
2.6.2 Acceptors
66(2)
2.7 The Concept of Holes
68(2)
2.7.1 Hole Charge
68(2)
2.8 Effective Mass of Electrons and Holes
70(2)
2.9 Density-of-States Functions for Electrons in Bands
72(1)
2.9.1 Density of States and Density-of-States Effective Mass
72(1)
2.10 Fermi-Dirac Statistics
73(5)
2.10.1 Fermi-Dirac Statistics for Electrons and Holes in Bands
75(3)
2.11 Electron and Hole Distributions with Energy
78(12)
2.12 Temperature Dependence of Carrier Concentrations in Nondegenerate Semiconductors
90(5)
2.12.1 Carrier Concentrations at High Temperatures
91(4)
2.12.2 Carrier Concentrations at Low Temperatures (Carrier Freeze-Out)
95(1)
2.13 Degenerate Semiconductors
95(6)
2.13.1 Impurity-Induced Band-Gap Narrowing
96(2)
2.13.2 Apparent Band-Gap Narrowing
98(3)
2.14 Summary
101(2)
2.14.1 Nondegenerate Semiconductors
102(1)
2.14.2 Degenerate Semiconductors
103(1)
2.15 References
103(1)
2.16 Review Questions
104(1)
2.17 Problems
104(9)
Chapter 3 Current Flow in Homogeneous Semiconductors
113(49)
3.1 Introduction
113(1)
3.2 Drift Current
113(4)
3.3 Carrier Mobility
117(13)
3.3.1 Carrier Scattering
121(2)
3.3.2 Scattering Mobility
123(1)
3.3.3 Impurity Band Mobility
124(2)
3.3.4 Temperature Dependence of Mobility
126(1)
3.3.5 High-Field Effects
126(4)
3.4 Diffusion Current
130(3)
3.5 Carrier Generation and Recombination
133(2)
3.5.1 Band-to-Band Generation and Recombination
135(1)
3.5.2 Two-Step Processes
135(1)
3.6 Optical Processes in Semiconductors
135(6)
3.6.1 Absorption
136(3)
3.6.2 Emission
139(2)
3.7 Continuity Equations
141(3)
3.8 Minority Carrier Lifetime
144(5)
3.8.1 Rise Time
146(1)
3.8.2 Fall Time
146(3)
3.9 Minority Carrier Diffusion Lengths
149(3)
3.10 Quasi Fermi Levels
152(2)
3.11 Summary
154(2)
3.12 References
156(1)
3.13 Review Questions
156(1)
3.14 Problems
157(5)
Chapter 4 Nonhomogeneous Semiconductors
162(18)
4.1 Constancy of The Fermi Level at Equilibrium
162(2)
4.2 Graded Doping
164(6)
4.3 Nonuniform Composition
170(3)
4.4 Graded Doping and Graded Composition Combined
173(2)
4.5 Summary
175(1)
4.6 References
175(1)
4.7 Review Questions
175(1)
4.8 Problems
176(4)
Supplement to Part 1 Introduction to Quantum Mechanics
180(43)
S1.1 Introduction
180(1)
S1.2 The Wave Function
180(2)
S1.3 Probability and the Wave Function
182(1)
S1.3.1 Particle in a One-Dimensional Potential Well
182(2)
S1.4 Schrodinger's Equation
184(1)
S1.5 Applying Schrodinger's Equation to Electrons
185(1)
S1.6 Some Results From Quantum Mechanics
186(21)
S1.6.1 The Free Electron
187(1)
S1.6.2 The Quasi-Free Electron
188(1)
S1.6.3 The Potential Energy Well
189(1)
S1.6.4 The Infinite Potential Well in One Dimension
190(3)
S1.6.5 Reflection and Transmission at a Finite Potential Barrier
193(2)
S1.6.6 Tunneling
195(8)
S1.6.7 The Finite Potential Well
203(2)
S1.6.8 The Hydrogen Atom Revisited
205(1)
S1.6.9 The Uncertainty Principle
205(2)
S1.7 Phonons
207(10)
S1.7.1 Carrier Scattering by Phonons
211(2)
S1.7.2 Indirect Electron Transitions
213(4)
S1.8 Summary
217(1)
S1.9 References
217(1)
S1.10 Review Questions
217(1)
S1.11 Problems
218(5)
PART 2 Diodes
223(115)
Chapter 5 Prototype pn Homojunctions
227(75)
5.1 Introduction
227(2)
5.2 Prototype pn Junctions (Qualitative)
229(16)
5.2.1 Energy Band Diagrams of Prototype pn Junctions
229(7)
5.2.2 Description of Current Flow in a pn Prototype Homojunction
236(5)
5.2.3 Tunnel Diodes
241(4)
5.3 Prototype pn Homojunctions (Quantitative)
245(32)
5.3.1 Energy Band Diagram at Equilibrium (Step Junction)
245(3)
5.3.2 Energy Band Diagram with Applied Voltage
248(6)
5.3.3 Current-Voltage Characteristics of pn Homojunctions
254(21)
5.3.4 Reverse-Bias Breakdown
275(2)
5.4 Small-Signal Impedance of Prototype Homojunctions
277(8)
5.4.1 Junction (Differential) Resistance
278(1)
5.4.2 Junction (Differential) Capacitance
279(2)
5.4.3 Stored-Charge Capacitance
281(4)
5.5 Transient Effects
285(6)
5.5.1 Turn-Off Transient
285(2)
5.5.2 Turn-On Transient
287(4)
5.6 Effects of Temperature
291(1)
5.7 Summary
292(4)
5.8 Review Questions
296(1)
5.9 Problems
296(6)
Chapter 6 Additional Considerations for Diodes
302(36)
6.1 Introduction
302(1)
6.2 Nonstep Homojunctions
302(8)
6.2.1 Linearly Graded Junctions
306(3)
6.2.2 Hyperabrupt Junctions
309(1)
6.3 Semiconductor Heterojunctions
310(13)
6.3.1 The Energy Band Diagrams of Semiconductor--Semiconductor Heterojunctions
310(4)
6.3.2 Tunneling-Induced Dipoles
314(4)
6.3.3 Effects of Interface States
318(4)
6.3.4 Effects of Lattice Mismatch on Heterojunctions
322(1)
6.4 Metal-Semiconductor Junctions
323(9)
6.4.1 Ideal Metal-Semiconductor Junctions (Electron Affinity Model)
323(2)
6.4.2 Influence of Interface-Induced Dipoles
325(1)
6.4.3 The Current-Voltage Characteristics of Metal-Semiconductor Junctions
326(4)
6.4.4 Ohmic (Low-Resistance) Contacts
330(1)
6.4.5 I-Va Characteristics of Heterojunction Diodes
331(1)
6.5 Capacitance in Nonideal Junctions and Heterojunctions
332(1)
6.6 Summary
332(1)
6.7 References
333(1)
6.8 Review Questions
333(1)
6.9 Problems
334(4)
Supplement to Part 2 Diodes
338(19)
S2.1 Introduction
338(1)
S2.2 Dielectric Relaxation Time
338(4)
S2.2.1 Case 1: Dielectric Relaxation Time for Majority Carriers
338(3)
S2.2.2 Case 2: Dielectric Relaxation Time for Minority Carriers
341(1)
S2.3 Junction Capacitance
342(6)
S2.3.1 Junction Capacitance in a Prototype (Step) Junction
342(2)
S2.3.2 Junction Capacitance in a Nonuniformly Doped Junction
344(1)
S2.3.3 Varactors
345(1)
S2.3.4 Stored-Charge Capacitance of Short-Base Diodes
346(2)
S2.4 Second-Order Effects in Schottky Diodes
348(5)
S2.4.1 Tunneling Through Schottky Barriers
349(2)
S2.4.2 Barrier Lowering in Schottky Diodes Due to The Image Effect
351(2)
S2.5 Summary
353(1)
S2.6 Review Questions
354(1)
S2.7 References
354(1)
S2.8 Problems
354(3)
PART 3 Field-Effect Transistors
357(136)
The Generic FET
358(4)
Transistors in Circuits
362(1)
The Basis for Deriving the ID-VDS Characteristics of a FET
362(5)
Chapter 7 The MOSFET
367(72)
7.1 Introduction
367(1)
7.2 MOSFETs (Qualitative)
367(22)
7.2.1 Introduction to MOS Capacitors
367(6)
7.2.2 MOS Capacitor Hybrid Diagrams
373(3)
7.2.3 MOSFETs at Equilibrium (Qualitative)
376(2)
7.2.4 MOSFETs Not at Equilibrium (Qualitative)
378(11)
7.3 Drift Model for MOSFETs (Quantitative)
389(32)
7.3.1 Long-Channel Drift MOSFET Model with Constant Channel Mobility
390(14)
7.3.2 More Realistic Long-Channel Models: Effect of Fields on the Mobility
404(16)
7.3.3 Series Resistance
420(1)
7.4 Comparison of Models with Experiment
421(2)
7.5 Ballistic Model for MOSFETs
423(3)
7.6 Some Short-Channel Effects
426(3)
7.6.1 Dependence of Effective Channel Length on VDS
426(2)
7.6.2 Dependence of Threshold Voltage on the Drain Voltage
428(1)
7.7 Subthreshold Leakage Current
429(3)
7.8 Summary
432(3)
7.9 References
435(1)
7.10 Review Questions
435(1)
7.11 Problems
436(3)
Chapter 8 Other Field-Effect Transistors
439(54)
8.1 Introduction
439(1)
8.2 Measurement of Threshold Voltage and Low-Field Mobility
440(4)
8.3 Complementary MOSFETs (CMOS)
444(5)
8.3.1 Operation of The CMOS Inverter
444(3)
8.3.2 Matching of CMOS Devices
447(2)
8.4 Switching in CMOS Inverter Circuits
449(5)
8.4.1 Effect of Load Capacitance
449(2)
8.4.2 Propagation (Gate) Delay in CMOS Switching Circuits
451(3)
8.4.3 Pass-Through Current in CMOS Switching
454(1)
8.5 Other MOSFETs
454(14)
8.5.1 Silicon on Insulator (SOI) MOSFETs
454(9)
8.5.2 FinFETs
463(2)
8.5.3 Nonvolatile MOSFETs
465(3)
8.6 Other FETS
468(16)
8.6.1 Heterojunction Field-Effect Transistors (HFETs)
468(7)
8.6.2 Metal-Semiconductor Field-Effect Transistors (MESFETs)
475(4)
8.6.3 Junction Field-Effect Transistors (JFETs)
479(1)
8.6.4 Tunnel Field-Effect Transistors (TFETs)
480(4)
8.7 Bulk Channel FETs: Quantitative
484(3)
8.8 Summary
487(1)
8.9 References
488(1)
8.10 Review Questions
489(1)
8.11 Problems
489(4)
Supplement to Part 3 Additional Consideration for MOSFETs
493(46)
S3.1 Introduction
493(1)
S3.2 Dependence of the Channel Charge QCh on the Longitudinal Field %L
493(2)
S3.3 Threshold Voltage for MOSFETs
495(11)
S3.3.1 Fixed Charge
496(1)
S3.3.2 Interface Trapped Charge
497(1)
S3.3.3 Bulk Charge
497(1)
S3.3.4 Effect of Charges on the Threshold Voltage
498(1)
S3.3.5 Flat Band Voltage
499(3)
S3.3.6 Threshold Voltage Control
502(2)
S3.3.7 Channel Quantum Effects
504(2)
S3.4 MOSFET Analog Equivalent Circuit
506(5)
S3.4.1 Small-Signal Equivalent Circuit
507(4)
S3.4.2 CMOS Amplifiers
511(1)
S3.5 Unity Current Gain Cutoff Frequency fT
511(3)
S3.6 MOS Capacitors
514(7)
S3.6.1 Ideal MOS Capacitance
514(5)
S3.6.2 The C-VG Characteristics of Real MOS Capacitors
519(1)
S3.6.3 MOSFET Parameter Analyses from C-Vq Measurements
520(1)
S3.7 Dynamic Random-Access Memories (DRAMs)
521(2)
S3.8 MOSFET Scaling [ 6]
523(3)
S3.9 Device and Interconnect Degradation
526(6)
S3.9.1 MOSFET Integrated Circuit Reliability
531(1)
S3.10 Summary
532(1)
S3.11 References
533(1)
S3.12 Review Questions
534(1)
S3.13 Problems
534(5)
PART 4 Bipolar Junction Transistors
539(84)
Chapter 9 Bipolar Junction Transistors: Statics
544(46)
9.1 Introduction
544(4)
9.2 Output Characteristics (Qualitative)
548(2)
9.3 Current Gain
550(1)
9.4 Model of a Prototype BJT
551(12)
9.4.7 Collection Efficiency M
554(1)
9.4.2 Injection Efficiency γ
555(2)
9.4.3 Base Transport Efficiency αT
557(6)
9.5 Doping Gradients in BJTs
563(7)
9.5.7 The Graded-Base Transistor
565(5)
9.5.2 Effect of Base Field on β
570(1)
9.6 Heterojunction Bipolar Transistors (HBTs)
570(9)
9.6.7 Uniformly Doped HBT
571(4)
9.6.2 Graded-Composition HBT: (Si: SiGe-Base: Si HBTs)
575(2)
9.6.3 Double Heterojunction Bipolar Transistor, (DHBT)
577(2)
9.7 Comparison of Si-Base, SiGe-Base, and GaAs-Base HBTs
579(1)
9.8 The Basic Ebers-Moll dc Model
579(4)
9.9 Summary
583(1)
9.10 References
584(1)
9.11 Review Questions
585(1)
9.12 Problems
586(4)
Chapter 10 Time-Dependent Analysis of BJTS
590(33)
10.1 Introduction
590(1)
10.2 Ebers-Moll ac Model
590(2)
10.3 Small-Signal Equivalent Circuits
592(6)
10.3.1 Hybrid-Pi Models
594(4)
10.4 Stored-Charge Capacitance in BJTs
598(5)
10.5 Frequency Response
603(5)
10.5.1 Unity Current Gain Frequency fT
604(2)
10.5.2 Base Transit Time tT
606(1)
10.5.3 Base-Collector Transit Time tBC
607(1)
10.5.4 Maximum Oscillation Frequency fmax
608(1)
10.6 High-Frequency Transistors
608(3)
10.6.1 Double Poly Si Self-Aligned Transistor
608(3)
10.7 BJT Switching Transistor
611(5)
10.7.1 Output Low-To-High Transition Time
612(2)
10.7.2 Schottky-Clamped Transistor
614(1)
10.7.3 Double Heterojunction Bipolar Transistor (DHBT)
615(1)
10.8 BJTs, MOSFETs, and BiMOS
616(4)
10.8.1 Comparison of BJTs and MOSFETs
616(2)
10.8.2 BiMOS
618(2)
10.9 Summary
620(1)
10.10 References
620(1)
10.11 Review Questions
621(1)
10.12 Problems
621(2)
Supplement to Part 4 Bipolar Devices
623(20)
S4.1 Introduction
623(1)
S4.2 Current Crowding and Base Resistance in BJTs
623(4)
S4.3 Base Width Modulation (Early Effect)
627(5)
S4.4 Avalanche Breakdown
632(1)
S4.5 High Injection
632(1)
S4.6 Base Push-Out (Kirk) Effect
633(2)
S4.7 Recombination in the Emitter-Base Junction
635(1)
S4.8 Offset Voltage in BJTs
636(1)
S4.9 Lateral Bipolar Transistors
637(1)
S4.10 Summary
638(1)
S4.11 References
638(1)
S4.12 Review Questions
639(1)
S4.13 Problems
639(4)
PART 5 Optoelectronic and Power Semiconductor Devices
643(107)
Chapter 11 Optoelectronic Devices
644(55)
11.1 Introduction and Preview
644(1)
11.2 Photodetectors
644(17)
77.2.7 Generic Photodetector
644(8)
11.2.2 Solar Cells
652(6)
11.2.3 The pin (PIN) Photodetector
658(2)
11.2.4 Avalanche Photodiodes
660(1)
11.3 Light-Emitting Diodes
661(13)
11.3.1 Spontaneous Emission in a Forward-Biased Junction
661(3)
11.3.2 Blue, Utraviolet, and White LEDs
664(1)
11.3.3 Infrared LEDs
664(7)
11.3.4 White LEDs and Solid-State Lighting
671(3)
11.4 Laser Diodes
674(12)
11.4.1 Optical Gain
675(2)
11.4.2 Feedback
677(3)
11.4.3 Gain + Feedback = Laser
680(2)
11.4.4 Laser Structures
682(4)
11.4.5 Other Semiconductor Laser Materials
686(1)
11.5 Image Sensors (Imagers)
686(6)
11.5.1 Charge-Coupled Devices (CCDs)
686(2)
11.5.2 Linear Image Sensors
688(3)
11.5.3 Area Image Sensors
691(1)
11.6 Summary
692(1)
11.7 References
693(1)
11.8 Review Questions
694(1)
11.9 Problems
694(5)
Chapter 12 Power Semiconductor Devices
699(51)
12.1 Introduction and Preview
699(1)
12.2 Rectifying Diodes
700(25)
12.2.1 Junction Breakdown
700(10)
12.2.2 Specific On-Resistance
710(8)
12.2.3 Transient Losses
718(5)
12.2.4 Merged Pin-Schottky (MPS) Diodes
723(2)
12.3 Thyristors (npnp Switching Devices)
725(11)
12.3.1 The Four-Layer Diode Switch
725(4)
12.3.2 Two-Transistor Model of an npnp Switch
729(1)
12.3.3 Silicon-Controlled Rectifiers (SCRs)
730(3)
12.3.4 TRIAC
733(2)
12.3.5 Gate Turn-Off Thyristors (GTOs)
735(1)
12.4 The Power MOSFET
736(4)
12.5 The Insulated-Gate Bipolar Transistor
740(5)
12.6 Power MOSFET versus IGBT
745(1)
12.7 Summary
746(1)
12.8 References
747(1)
12.9 Review Questions
748(1)
12.10 Problems
748(2)
Appendices
Appendix A Constants
750(4)
Appendix B List of Symbols
754(15)
Appendix C Fabrication
769(23)
C.1 Introduction
769(1)
C.2 Substrate Preparation
769(8)
C.2.1 The Raw Material
770(1)
C.2.2 Crystal Growth
770(3)
C.2.3 Defects
773(1)
C.2.4 Epitaxy
774(3)
C.3 Doping
777(3)
C.3.1 Diffusion
777(1)
C.3.2 Ion Implantation
778(2)
C.4 Lithography
780(2)
C.5 Conductors and Insulators
782(3)
C.5.1 Metallization
782(1)
C.5.2 Poly Si
783(1)
C.5.3 Oxidation
783(1)
C.5.4 Silicon Nitride
784(1)
C.6 Silicon Oxynitride (SiOxNY or SiON)
785(2)
C.7 Clean Rooms
787(1)
C.8 Packaging
787(4)
C.8.1 Wire Bonding
788(1)
C.8.2 Lead Frame
789(1)
C.8.3 Surface-Mount Packages
790(1)
C.9 Summary
791(1)
Appendix D Some Useful Integrals
792(1)
Appendix E Useful Equations
793(10)
General Physics
793(1)
Semiconductor Materials
793(1)
Junctions
794(2)
Field-Effect Transistors
796(2)
Bipolar Junction Transistors
798(3)
Optoelectronic Devices
801(1)
Power Semiconductor Devices
802(1)
Index 803