Muutke küpsiste eelistusi

Fundamentals of Wind Farm Aerodynamic Layout Design [Pehme köide]

(Assistant Professor, K. N. Toosi University of Technology, Tehran, Iran)
  • Formaat: Paperback / softback, 372 pages, kõrgus x laius: 229x152 mm, kaal: 590 g, Approx. 150 illustrations; Illustrations
  • Sari: Wind Energy Engineering
  • Ilmumisaeg: 26-Jan-2022
  • Kirjastus: Academic Press Inc
  • ISBN-10: 0128230169
  • ISBN-13: 9780128230169
  • Formaat: Paperback / softback, 372 pages, kõrgus x laius: 229x152 mm, kaal: 590 g, Approx. 150 illustrations; Illustrations
  • Sari: Wind Energy Engineering
  • Ilmumisaeg: 26-Jan-2022
  • Kirjastus: Academic Press Inc
  • ISBN-10: 0128230169
  • ISBN-13: 9780128230169

Fundamentals of Wind Farm Aerodynamic Layout Design, Volume Four provides readers with effective wind farm design and layout guidance through algorithm optimization, going beyond other references and general approaches in literature. Focusing on interactions of wake models, designers can combine numerical schemes presented in this book which also considers wake models’ effects and problems on layout optimization in order to simulate and enhance wind farm designs. Covering the aerodynamic modeling and simulation of wind farms, the book's authors include experimental tests supporting modeling simulations and tutorials on the simulation of wind turbines.

In addition, the book includes a CFD technique designed to be more computationally efficient than currently available techniques, making this book ideal for industrial engineers in the wind industry who need to produce an accurate simulation within limited timeframes.

  • Features novel CFD modeling
  • Offers global case studies for turbine wind farm layouts
  • Includes tutorials on simulation of wind turbine using OpenFoam
Preface xiii
1 Wind energy
1.1 History of wind turbines
1(1)
1.2 Pros and cons of wind energy
2(2)
1.3 Trend of wind energy in the world
4(1)
1.4 Wind turbine types
5(6)
1.4.1 Horizontal-axis wind turbine
5(2)
1.4.2 Vertical-axis wind turbine
7(4)
1.5 Wind turbine components
11(12)
1.5.1 Blades, hub, and low-speed shaft
12(2)
1.5.2 Generator
14(1)
1.5.3 Gearbox and high-speed shaft
15(1)
1.5.4 Tower
16(1)
1.5.5 Yaw systems
17(1)
1.5.6 Anemometer
17(3)
1.5.7 Brakes
20(1)
1.5.8 Fluctuation monitoring systems
21(1)
1.5.9 Lubrication system
22(1)
1.5.10 Foundation
22(1)
1.5.11 Other components
23(1)
1.6 Summary
23(1)
1.7 Problems
23(3)
References
24(2)
2 Wind properties and power generation
2.1 Atmospheric properties
26(10)
2.1.1 Global wind direction
27(2)
2.1.2 Turbulence
29(1)
2.1.3 Variation of wind with height
29(7)
2.2 Statistical study of wind
36(13)
2.2.1 Mean and variance
39(3)
2.2.2 Probability
42(5)
2.2.3 Wind rose chart
47(2)
2.3 Wind power
49(7)
2.3.1 Power of a wind element
50(1)
2.3.2 Power of an ideal turbine, actuator disc model
51(3)
2.3.3 Betz's limit
54(2)
2.4 Efficiency of wind turbine components
56(15)
2.4.1 Efficiency of blades or coefficient of performance
57(2)
2.4.2 Efficiency of gearbox
59(2)
2.4.3 Efficiency of generator
61(1)
2.4.4 Overall efficiency
61(10)
2.5 Yearly gained energy of a wind turbine
71(2)
2.6 The capacity factor of a wind turbine
73(1)
2.7 Summary
74(1)
2.8 Problems
74(4)
References
75(3)
3 Basics of aerodynamics
3.1 Airfoils
78(3)
3.1.1 NACA series
79(1)
3.1.2 NREL
80(1)
3.1.3 Other types
80(1)
3.2 Aerodynamic forces on an airfoil
81(6)
3.3 Aerodynamic forces on a blade
87(2)
3.4 Generated vortex behind a wind turbine
89(3)
3.5 Blade element method
92(7)
3.6 Blades with different airfoils
99(1)
3.7 Simulation of wind turbines
100(7)
3.7.1 Stall-regulated wind turbines
100(4)
3.7.2 Pitch-controlled wind turbines
104(3)
3.8 Summary
107(1)
3.9 Problems
107(5)
References
109(3)
4 Wind turbine wake and its role in farm design
4.1 Wake generation of a wind turbine
112(4)
4.2 Conventional wake models
116(25)
4.2.1 Jensen's model
116(4)
4.2.2 Frandsen's model
120(7)
4.2.3 Larsen model
127(9)
4.2.4 Ghadirian model
136(5)
4.3 Gained energy of a farm
141(1)
4.4 Optimization
142(2)
4.5 Summary
144(1)
4.6 Problems
145(6)
References
146(5)
5 Analytical model based on similarity solution
5.1 Turbulent free-shear wake
151(1)
5.2 Self-similarity method
151(3)
5.3 Similarity solution for a single wind turbine
154(7)
5.3.1 Initial wake profile just behind the wind turbine
154(4)
5.3.2 Calculation of wake expansion radius and velocity deficit at axis line
158(3)
5.4 Wake interaction
161(3)
5.5 Simulation of a wind farm
164(2)
5.5.1 Wind profile just behind a wind turbine
164(1)
5.5.2 Wake profile at far distances behind the wind turbine
165(1)
5.6 Simulation of wind farms
166(10)
5.6.1 Four wind turbines in a row
166(3)
5.6.2 A 4 × 4 wind farm
169(7)
5.7 The gained energy of a wind farm
176(6)
5.8 Summary
182(1)
5.9 Problems
182(6)
References
183(5)
6 Numerical simulation of a wind turbine
6.1 Basic fluid dynamics concepts
188(4)
6.1.1 Governing equations of fluid flow
189(1)
6.1.2 Turbulence
190(2)
6.1.3 Wake
192(1)
6.2 Different types of modeling
192(4)
6.2.1 Full rotor
193(1)
6.2.2 Actuator line
194(1)
6.2.3 Actuator disc
195(1)
6.3 Development of actuator disc method using OpenFOAM
196(5)
6.3.1 Geometry and mesh generation using BlockMesh
196(2)
6.3.2 Source term definition
198(1)
6.3.3 Turbulence modeling
199(1)
6.3.4 Solver selection and settings
200(1)
6.4 Modified actuator disc
201(2)
6.4.1 Radial load distribution
201(1)
6.4.2 Modified source term
202(1)
6.5 Simulation example
203(8)
6.5.1 Numerical model
203(1)
6.5.2 Computational domain
204(1)
6.5.3 Boundary conditions
204(1)
6.5.4 Grid sensitivity
205(1)
6.5.5 Results
206(5)
6.6 Summary
211(2)
6.7 Problems
213(3)
References
213(3)
7 Numerical simulation of a wind farm
7.1 Wind farm layout generation
216(3)
7.1.1 Automatic layout generation
216(2)
7.1.2 Upstream velocity
218(1)
7.2 Simulation example: Horns Rev offshore wind farm
219(7)
7.2.1 Numerical settings
220(1)
7.2.2 Boundary conditions
220(1)
7.2.3 Computational domain and mesh study
221(1)
7.2.4 Results
222(4)
7.3 Summary
226(2)
7.4 Problems
228(3)
References
228(3)
8 Optimization for wind farm layout design
8.1 Optimization algorithms
231(1)
8.2 Cost function and constraints
232(4)
8.3 Coupling of optimization methods and wake models
236(1)
8.4 Some worked examples
237(8)
8.4.1 Optimization for a constant-direction wind
238(3)
8.4.2 Optimization for a real case
241(2)
8.4.3 Optimization of a 4 × 4 wind farm
243(2)
8.5 Applying additional constraints
245(3)
8.6 Summary
248(1)
8.7 Problems
248(7)
References
252(3)
A Ancient Persian wind turbines
References
255(3)
B Wind turbine airfoils
B.1 NACA families
258(3)
B.2 FFA family
261(1)
B.3 Riso family
262(2)
B.4 DU family
264(1)
B.5 FX family
265(1)
B.6 NREL family
266(1)
B.7 Summary
267(2)
References
268(1)
C Some wind turbine specifications
C.1 Enercon E-16
269(1)
C.2 Enercon E-18
270(1)
C.3 Nordtank NTK 150
271(2)
C.4 Nordtank NTK 200
273(1)
C.5 Vestas V27
273(1)
C.6 Vestas V29
274(1)
C.7 Micon M 530
275(1)
C.8 Enercon E-30
276(1)
C.9 Nordtank NTK 400
277(1)
C.10 Vestas V39
278(1)
C.11 Nordtank NTK 500/41
279(2)
C.12 Vestas V44
281(1)
C.13 Enercon E-40/6.44
282(1)
C.14 Wincon W755/48
283(1)
C.15 VergnetCEV HP 1000/62
284(1)
C.16 Siemens SVVT-1.3-62
285(1)
C.17 Vestas V80 2 MW
285(1)
C.18 Vestas V90 2 MW
286(1)
C.19 Eno Energy Eno 100
287(1)
C.20 Siemens SWT-2.3-93 Offshore
288(1)
C.21 Mapna MWT2.5-103-I
288(2)
C.22 Siemens SWT-4.0-130
290(1)
C.23 Siemens SWT-6.0-154
291(1)
C.24 Aerodyn-8.0MW
291(1)
C.25 AMSCwt10000dd SeaTitan
292(1)
C.26 Summary
293(2)
References
293(2)
D Sample wind farms
D.1 A 4-in-a-row wind farm
295(1)
D.2 A 4 × 4 wind farm
295(1)
D.3 Horns Rev wind farm
296(1)
D.4 Aghkand wind farm in Iran
297(8)
References
299(6)
E Optimization methods
Mehrzad Alizadeh
E.1 Crow search algorithm
305(4)
E.2 Whale optimization algorithm
309(4)
E.3 Teaching-learning-based optimization algorithm
313(2)
E.4 Particle swarm optimization algorithm
315(7)
E.5 Genetic algorithm
322(4)
E.6 Summary
326(1)
References
326(1)
F Implementing optimization methods in C++
F.1 Genetic algorithm (GA)
327(10)
F.2 Particle swarm optimization (PSO)
337(12)
G Implementing blade element momentum method in C
Index 349
Farschad Torabi is an assistant professor at K. N. Toosi University of Technology, Iran. His research interests include renewable energies, batteries and electrochemical systems. His background is in mechanical engineering and his research agenda addresses numerical simulation, using a combination of computational fluid mechanics and analytical methods.