Acknowledgements |
|
xi | |
Preface to the First Edition |
|
xiii | |
Preface to the Second Edition |
|
xv | |
Preface to the Third Edition |
|
xvii | |
Preface to the Fourth Edition |
|
xxi | |
Historical Introduction |
|
1 | (16) |
|
|
17 | (18) |
|
|
18 | (1) |
|
1.2 Subfields and Subrings of the Complex Numbers |
|
|
18 | (4) |
|
|
22 | (2) |
|
|
24 | (11) |
|
2 The Fundamental Theorem of Algebra |
|
|
35 | (12) |
|
|
35 | (4) |
|
2.2 Fundamental Theorem of Algebra |
|
|
39 | (3) |
|
|
42 | (5) |
|
3 Factorisation of Polynomials |
|
|
47 | (16) |
|
3.1 The Euclidean Algorithm |
|
|
47 | (4) |
|
|
51 | (3) |
|
|
54 | (1) |
|
3.4 Eisenstein's Criterion |
|
|
55 | (2) |
|
|
57 | (1) |
|
|
58 | (5) |
|
|
63 | (8) |
|
|
63 | (3) |
|
|
66 | (1) |
|
|
67 | (4) |
|
|
71 | (8) |
|
5.1 Algebraic and Transcendental Extensions |
|
|
71 | (1) |
|
5.2 The Minimal Polynomial |
|
|
72 | (1) |
|
5.3 Simple Algebraic Extensions |
|
|
73 | (2) |
|
5.4 Classifying Simple Extensions |
|
|
75 | (4) |
|
6 The Degree of an Extension |
|
|
79 | (8) |
|
6.1 Definition of the Degree |
|
|
79 | (1) |
|
|
80 | (7) |
|
7 Ruler-and-Compass Constructions |
|
|
87 | (20) |
|
7.1 Approximate Constructions and More General Instruments |
|
|
89 | (1) |
|
|
90 | (4) |
|
7.3 Specific Constructions |
|
|
94 | (5) |
|
|
99 | (2) |
|
7.5 Construction From a Given Set of Points |
|
|
101 | (6) |
|
8 The Idea Behind Galois Theory |
|
|
107 | (22) |
|
8.1 A First Look at Galois Theory |
|
|
108 | (1) |
|
8.2 Galois Groups According to Galois |
|
|
108 | (2) |
|
8.3 How to Use the Galois Group |
|
|
110 | (1) |
|
|
111 | (1) |
|
8.5 Polynomials and Extensions |
|
|
112 | (2) |
|
8.6 The Galois Correspondence |
|
|
114 | (2) |
|
|
116 | (5) |
|
8.8 Natural Irrationalities |
|
|
121 | (8) |
|
9 Normality and Separability |
|
|
129 | (8) |
|
|
129 | (3) |
|
|
132 | (1) |
|
|
133 | (4) |
|
|
137 | (8) |
|
10.1 Linear Independence of Monomorphisms |
|
|
137 | (8) |
|
|
145 | (6) |
|
|
145 | (1) |
|
|
146 | (5) |
|
12 The Galois Correspondence |
|
|
151 | (4) |
|
12.1 The Fundamental Theorem of Galois Theory |
|
|
151 | (4) |
|
|
155 | (6) |
|
14 Solubility and Simplicity |
|
|
161 | (10) |
|
|
161 | (3) |
|
|
164 | (2) |
|
|
166 | (5) |
|
|
171 | (10) |
|
|
171 | (5) |
|
15.2 An Insoluble Quintic |
|
|
176 | (2) |
|
|
178 | (3) |
|
16 Abstract Rings and Fields |
|
|
181 | (12) |
|
|
181 | (3) |
|
16.2 General Properties of Rings and Fields |
|
|
184 | (2) |
|
16.3 Polynomials Over General Rings |
|
|
186 | (1) |
|
16.4 The Characteristic of a Field |
|
|
187 | (1) |
|
|
188 | (5) |
|
17 Abstract Field Extensions |
|
|
193 | (12) |
|
|
193 | (1) |
|
17.2 Simple Algebraic Extensions |
|
|
194 | (1) |
|
|
195 | (2) |
|
|
197 | (1) |
|
|
197 | (5) |
|
17.6 Galois Theory for Abstract Fields |
|
|
202 | (3) |
|
18 The General Polynomial Equation |
|
|
205 | (16) |
|
18.1 Transcendence Degree |
|
|
205 | (3) |
|
18.2 Elementary Symmetric Polynomials |
|
|
208 | (1) |
|
18.3 The General Polynomial |
|
|
209 | (2) |
|
|
211 | (3) |
|
18.5 Solving Equations of Degree Four or Less |
|
|
214 | (7) |
|
|
221 | (6) |
|
19.1 Structure of Finite Fields |
|
|
221 | (1) |
|
19.2 The Multiplicative Group |
|
|
222 | (2) |
|
19.3 Application to Solitaire |
|
|
224 | (3) |
|
|
227 | (16) |
|
|
227 | (3) |
|
20.2 Which Constructions are Possible? |
|
|
230 | (1) |
|
|
231 | (4) |
|
|
235 | (1) |
|
20.5 How to Draw a Regular 17-gon |
|
|
235 | (8) |
|
|
243 | (24) |
|
|
244 | (2) |
|
21.2 Fifth Roots Revisited |
|
|
246 | (3) |
|
21.3 Vandermonde Revisited |
|
|
249 | (1) |
|
|
250 | (3) |
|
21.5 Cyclotomic Polynomials |
|
|
253 | (2) |
|
21.6 Galois Group of Q(ζ): Q |
|
|
255 | (1) |
|
|
256 | (1) |
|
21.8 More on Cyclotomic Polynomials |
|
|
257 | (2) |
|
21.9 Constructions Using a Trisector |
|
|
259 | (8) |
|
22 Calculating Galois Groups |
|
|
267 | (10) |
|
22.1 Transitive Subgroups |
|
|
267 | (1) |
|
22.2 Bare Hands on the Cubic |
|
|
268 | (3) |
|
|
271 | (1) |
|
22.4 General Algorithm for the Galois Group |
|
|
272 | (5) |
|
23 Algebraically Closed Fields |
|
|
277 | (8) |
|
23.1 Ordered Fields and Their Extensions |
|
|
277 | (2) |
|
|
279 | (2) |
|
|
281 | (4) |
|
24 Transcendental Numbers |
|
|
285 | (10) |
|
|
286 | (2) |
|
|
288 | (1) |
|
|
289 | (6) |
|
25 What Did Galois Do or Know? |
|
|
295 | (14) |
|
25.1 List of the Relevant Material |
|
|
296 | (1) |
|
|
296 | (1) |
|
|
297 | (2) |
|
25.4 What is Galois Up To? |
|
|
299 | (2) |
|
25.5 Alternating Groups, Especially A5 |
|
|
301 | (1) |
|
25.6 Simple Groups Known to Galois |
|
|
302 | (1) |
|
25.7 Speculations about Proofs |
|
|
303 | (6) |
References |
|
309 | (6) |
Index |
|
315 | |