Foreword |
|
xiii | |
Acknowledgments |
|
xv | |
|
1 GaN Technology Overview |
|
|
1 | (18) |
|
1.1 Silicon Power MOSFETs 1976--2010 |
|
|
1 | (1) |
|
1.2 The GaN Journey Begins |
|
|
2 | (1) |
|
|
2 | (4) |
|
|
3 | (1) |
|
1.3.2 Critical Field (Ecrit) |
|
|
3 | (1) |
|
1.3.3 On-Resistance (RDS(on)) |
|
|
4 | (1) |
|
1.3.4 The Two-Dimensional Electron Gas |
|
|
4 | (2) |
|
1.4 The Basic GaN Transistor Structure |
|
|
6 | (4) |
|
1.4.1 Recessed Gate Enhancement-Mode Structure |
|
|
7 | (1) |
|
1.4.2 Implanted Gate Enhancement-Mode Structure |
|
|
7 | (1) |
|
1.4.3 pGaN Gate Enhancement-Mode Structure |
|
|
8 | (1) |
|
1.4.4 Cascode Hybrid Enhancement-Mode Structure |
|
|
8 | (2) |
|
1.4.5 Reverse Conduction in HEMT Transistors |
|
|
10 | (1) |
|
1.5 Building a GaN Transistor |
|
|
10 | (4) |
|
1.5.1 Substrate Material Selection |
|
|
10 | (1) |
|
1.5.2 Growing the Heteroepitaxy |
|
|
11 | (1) |
|
1.5.3 Processing the Wafer |
|
|
12 | (2) |
|
1.5.4 Making Electrical Connection to the Outside World |
|
|
14 | (1) |
|
|
14 | (5) |
|
|
17 | (2) |
|
2 GaN Transistor Electrical Characteristics |
|
|
19 | (20) |
|
|
19 | (1) |
|
2.2 Key Device Parameters |
|
|
19 | (8) |
|
2.2.1 Breakdown Voltage (BVDSS) and Leakage Current (IDSS) |
|
|
19 | (5) |
|
2.2.2 On-Resistance (RDS(on)) |
|
|
24 | (2) |
|
2.2.3 Threshold Voltage (VGS(th) or Vth) |
|
|
26 | (1) |
|
2.3 Capacitance and Charge |
|
|
27 | (4) |
|
|
31 | (2) |
|
|
33 | (3) |
|
2.6 Transient Thermal Impedance |
|
|
36 | (1) |
|
|
37 | (2) |
|
|
38 | (1) |
|
3 Driving GaN Transistors |
|
|
39 | (16) |
|
|
39 | (2) |
|
|
41 | (2) |
|
3.3 Bootstrapping and Floating Supplies |
|
|
43 | (1) |
|
|
44 | (3) |
|
|
47 | (1) |
|
|
48 | (2) |
|
|
50 | (1) |
|
3.8 Gate Driver Edge Rate |
|
|
51 | (1) |
|
3.9 Driving Cascode GaN Devices |
|
|
51 | (2) |
|
|
53 | (2) |
|
|
53 | (2) |
|
4 Layout Considerations for GaN Transistor Circuits |
|
|
55 | (15) |
|
|
55 | (1) |
|
4.2 Minimizing Parasitic Inductance |
|
|
55 | (3) |
|
4.3 Conventional Power Loop Designs |
|
|
58 | (2) |
|
4.4 Optimizing the Power Loop |
|
|
60 | (1) |
|
4.5 Paralleling GaN Transistors |
|
|
61 | (8) |
|
4.5.1 Paralleling GaN Transistors for a Single Switch |
|
|
61 | (4) |
|
4.5.2 Paralleling GaN Transistors for Half-Bridge Applications |
|
|
65 | (4) |
|
|
69 | (1) |
|
|
69 | (1) |
|
5 Modeling and Measurement of GaN Transistors |
|
|
70 | (19) |
|
|
70 | (1) |
|
|
70 | (6) |
|
|
70 | (3) |
|
5.2.2 Limitations of Basic Modeling |
|
|
73 | (2) |
|
5.2.3 Limitations of Circuit Modeling |
|
|
75 | (1) |
|
|
76 | (7) |
|
5.3.1 Improving Thermal Performance |
|
|
77 | (2) |
|
5.3.2 Modeling of Multiple Die |
|
|
79 | (3) |
|
5.3.3 Modeling of Complex Systems |
|
|
82 | (1) |
|
5.4 Measuring GaN Transistor Performance |
|
|
83 | (4) |
|
5.4.1 Voltage Measurement Requirements |
|
|
83 | (2) |
|
5.4.2 Current Measurement Requirement |
|
|
85 | (2) |
|
|
87 | (2) |
|
|
87 | (2) |
|
6 Hard-Switching Topologies |
|
|
89 | (39) |
|
|
89 | (1) |
|
6.2 Hard-Switching Loss Analysis |
|
|
89 | (12) |
|
|
91 | (5) |
|
6.2.2 Output Capacitance (COSS) Losses |
|
|
96 | (1) |
|
6.2.3 Gate Charge (QG) Losses |
|
|
96 | (1) |
|
6.2.4 Reverse Conduction Losses (PSD) |
|
|
97 | (2) |
|
6.2.5 Reverse Recovery (QRR) Losses |
|
|
99 | (1) |
|
6.2.6 Total Hard-Switching Losses |
|
|
99 | (1) |
|
6.2.7 Hard-Switching Figure of Merit |
|
|
100 | (1) |
|
6.3 External Factors Impacting Hard-Switching Losses |
|
|
101 | (5) |
|
6.3.1 Impact of Common-Source Inductance |
|
|
101 | (2) |
|
6.3.2 Impact of High Frequency Power-Loop Inductance on Device Losses |
|
|
103 | (3) |
|
6.4 Reducing Body Diode Conduction Losses in GaN Transistors |
|
|
106 | (3) |
|
6.5 Frequency Impact on Magnetics |
|
|
109 | (1) |
|
|
109 | (1) |
|
|
110 | (1) |
|
6.6 Buck Converter Example |
|
|
110 | (16) |
|
6.6.1 Output Capacitance Losses |
|
|
112 | (2) |
|
|
114 | (3) |
|
6.6.3 Body Diode Conduction Losses (PSD) |
|
|
117 | (2) |
|
6.6.4 Switching Losses (Psw) |
|
|
119 | (1) |
|
6.6.5 Total Dynamic Losses (P Dynamic) |
|
|
120 | (1) |
|
6.6.6 Conduction Losses (P Conduction) |
|
|
120 | (1) |
|
6.6.7 Total Device Hard-Switching Losses (P HS) |
|
|
121 | (1) |
|
6.6.8 Inductor Losses (PL) |
|
|
122 | (1) |
|
6.6.9 Total Buck Converter Estimated Losses (PTotal) |
|
|
122 | (1) |
|
6.6.10 Buck Converter Loss Analysis Accounting for Common Source Inductance |
|
|
123 | (2) |
|
6.6.11 Experimental Results for the Buck Converter |
|
|
125 | (1) |
|
|
126 | (2) |
|
|
126 | (2) |
|
7 Resonant and Soft-Switching Converters |
|
|
128 | (22) |
|
|
128 | (1) |
|
7.2 Resonant and Soft-Switching Techniques |
|
|
128 | (5) |
|
7.2.1 Zero-Voltage and Zero-Current Switching |
|
|
128 | (1) |
|
7.2.2 Resonant DC-DC Converters |
|
|
129 | (1) |
|
7.2.3 Resonant Network Combinations |
|
|
130 | (1) |
|
7.2.4 Resonant Network Operating Principles |
|
|
131 | (1) |
|
7.2.5 Resonant Switching Cells |
|
|
132 | (1) |
|
7.2.6 Soft-Switching DC-DC Converters |
|
|
133 | (1) |
|
7.3 Key Device Parameters for Resonant and Soft-Switching Applications |
|
|
133 | (6) |
|
7.3.1 Output Charge (QOSS) |
|
|
133 | (1) |
|
7.3.2 Determining Output Charge from Manufacturers' Datasheet |
|
|
134 | (1) |
|
7.3.3 Comparing Output Charge of GaN Transistors and Si MOSFETs |
|
|
135 | (1) |
|
|
136 | (1) |
|
7.3.5 Determining Gate Charge for Resonant and Soft-Switching Applications |
|
|
136 | (2) |
|
7.3.6 Comparing Gate Charge of GaN Transistors and Si MOSFETs |
|
|
138 | (1) |
|
7.3.7 Comparing Performance Metrics of GaN Transistors and Si MOSFETs |
|
|
138 | (1) |
|
7.4 High-Frequency Resonant Bus Converter Example |
|
|
139 | (9) |
|
7.4.1 Resonant GaN and Si Bus Converter Designs |
|
|
142 | (1) |
|
7.4.2 GaN and Si Device Comparison |
|
|
143 | (1) |
|
7.4.3 Zero-Voltage Switching Transition |
|
|
144 | (1) |
|
7.4.4 Efficiency and Power Loss Comparison |
|
|
145 | (3) |
|
|
148 | (2) |
|
|
148 | (2) |
|
|
150 | (22) |
|
|
150 | (1) |
|
8.2 Differences Between RF and Switching Transistors |
|
|
151 | (2) |
|
|
153 | (1) |
|
8.4 RF Transistor Metrics |
|
|
154 | (7) |
|
8.4.1 Determining the High-Frequency Characteristics of RF FETs |
|
|
155 | (1) |
|
8.4.2 Pulse Testing for Thermal Considerations |
|
|
156 | (2) |
|
8.4.3 Analyzing the S-Parameters |
|
|
158 | (3) |
|
8.5 Amplifier Design Using Small-Signal S-Parameters |
|
|
161 | (1) |
|
8.5.1 Conditionally Stable Bilateral Transistor Amplifier Design |
|
|
161 | (1) |
|
8.6 Amplifier Design Example |
|
|
162 | (8) |
|
8.6.1 Matching and Bias Tee Network Design |
|
|
165 | (3) |
|
8.6.2 Experimental Verification |
|
|
168 | (2) |
|
|
170 | (2) |
|
|
170 | (2) |
|
9 GaN Transistors for Space Applications |
|
|
172 | (7) |
|
|
172 | (1) |
|
|
172 | (1) |
|
9.3 Standards for Radiation Exposure and Tolerance |
|
|
173 | (1) |
|
9.4 Gamma Radiation Tolerance |
|
|
173 | (2) |
|
9.5 Single-Event Effects (SEE) Testing |
|
|
175 | (1) |
|
9.6 Performance Comparison between GaN Transistors and Rad-Hard Si MOSFETs |
|
|
176 | (1) |
|
|
177 | (2) |
|
|
177 | (2) |
|
|
179 | (53) |
|
|
179 | (1) |
|
10.2 Non-Isolated DC-DC Converters |
|
|
179 | (12) |
|
10.2.1 12 VIN -- 1.2 VOUT Buck Converter |
|
|
180 | (4) |
|
10.2.2 28 VIN -- 3.3 VOUT Point-of-Load Module |
|
|
184 | (1) |
|
10.2.3 48 VIN -- 12 VOUT Buck Converter with Parallel GaN Transistors for High-Current Applications |
|
|
185 | (6) |
|
10.3 Isolated DC-DC Converters |
|
|
191 | (13) |
|
10.3.1 Hard-Switching Intermediate Bus Converters |
|
|
192 | (11) |
|
10.3.2 A 400 V LLC Resonant Converter |
|
|
203 | (1) |
|
|
204 | (4) |
|
10.4.1 Total Harmonic Distortion (THD) |
|
|
204 | (1) |
|
10.4.2 Damping Factor (DF) |
|
|
205 | (1) |
|
10.4.3 Class-D Audio Amplifier Example |
|
|
206 | (2) |
|
|
208 | (6) |
|
10.5.1 High-Frequency GaN Transistors |
|
|
209 | (2) |
|
10.5.2 Envelope Tracking Experimental Results |
|
|
211 | (1) |
|
10.5.3 Gate Driver Limitations |
|
|
211 | (3) |
|
10.6 Highly Resonant Wireless Energy Transfer |
|
|
214 | (10) |
|
10.6.1 Design Considerations for Wireless Energy Transfer |
|
|
216 | (1) |
|
10.6.2 Wireless Energy Transfer Examples |
|
|
217 | (7) |
|
10.6.3 Summary of Design Considerations for Wireless Energy Transfer |
|
|
224 | (1) |
|
10.7 LiDAR and Pulsed Laser Applications |
|
|
224 | (2) |
|
10.8 Power Factor Correction (PFC) |
|
|
226 | (1) |
|
10.9 Motor Drive and Photovoltaic Inverters |
|
|
227 | (1) |
|
|
228 | (4) |
|
|
228 | (4) |
|
11 Replacing Silicon Power MOSFETs |
|
|
232 | (7) |
|
11.1 What Controls the Rate of Adoption? |
|
|
232 | (1) |
|
11.2 New Capabilities Enabled by GaN Transistors |
|
|
232 | (1) |
|
11.3 GaN Transistors are Easy to Use |
|
|
233 | (1) |
|
|
234 | (1) |
|
|
234 | (1) |
|
|
234 | (1) |
|
|
235 | (1) |
|
|
235 | (1) |
|
11.5 GaN Transistors are Reliable |
|
|
235 | (1) |
|
|
236 | (1) |
|
|
237 | (2) |
|
|
237 | (2) |
Appendix |
|
239 | (7) |
Index |
|
246 | |