Muutke küpsiste eelistusi

Gas Chromatography 2nd edition [Pehme köide]

Edited by (Department of Chemistry, Wayne State University, Detroit, MI, USA)
  • Formaat: Paperback / softback, 936 pages, kõrgus x laius: 235x191 mm, kaal: 1880 g, Approx. 400 illustrations; Illustrations, unspecified
  • Sari: Handbooks in Separation Science
  • Ilmumisaeg: 15-Apr-2021
  • Kirjastus: Elsevier Science Publishing Co Inc
  • ISBN-10: 0128206756
  • ISBN-13: 9780128206751
Teised raamatud teemal:
  • Formaat: Paperback / softback, 936 pages, kõrgus x laius: 235x191 mm, kaal: 1880 g, Approx. 400 illustrations; Illustrations, unspecified
  • Sari: Handbooks in Separation Science
  • Ilmumisaeg: 15-Apr-2021
  • Kirjastus: Elsevier Science Publishing Co Inc
  • ISBN-10: 0128206756
  • ISBN-13: 9780128206751
Teised raamatud teemal:

Gas Chromatography, Second Edition, offers a single source of authoritative information on all aspects relating to the practice of gas chromatography. A focus on short, topic-focused chapters facilitates the identification of information that will be of immediate interest for familiar or emerging uses of gas chromatography. The book gives those working in both academia and industry the opportunity to learn, refresh and deepen their understanding of fundamental and instrumental aspects of gas chromatography and tools for the interpretation and management of chromatographic data. Users will find a consolidated guide to the selection of separation conditions and the use of auxiliary techniques.

This new edition restores the contemporary character of the book with respect to those involved in advancing the technology, analyzing the data produced, or applying the technique to new application areas. New topics covered include hyphenated spectroscopic detectors, micromachined instrument platforms, derivatization and related microchemical techniques, petrochemical applications, volatile compounds in the atmosphere, and more.

  • Includes chapters written by recognized authoritative and visionary experts in the field, thus providing an overview and focused treatments on a single topic
  • Provides comprehensive coverage of modern gas chromatography, from theory, to methods and selected applications
  • Places modern developments in research literature into a general context not always apparent to inexperienced users of the techniques
Contributors xi
1 Milestones in the development of gas chromatography
Walter G. Jennings
Colin F. Poole
1.1 Introduction
1(1)
1.2 The invention of gas chromatography
1(1)
1.3 Early instrumentation
2(1)
1.4 Early column developments
3(3)
1.5 Interfacing glass capillary columns to injectors and detectors
6(1)
1.6 The Hindelang conferences and the fused-silica column
7(2)
1.7 Increasing sophistication of instrumentation
9(6)
1.8 Decline in the expertise of the average gas chromatographer
15(4)
References
16(1)
Further reading
17(2)
2 Theory of gas chromatography
Leonid M. Blumberg
2.1 Introduction
19(1)
2.2 Nomenclature and other conventions
20(3)
2.3 General definitions and conventions
23(1)
2.4 Solute---column interaction
23(6)
2.5 Properties of ideal gas
29(4)
2.6 Flow of ideal gas in open tubes
33(4)
2.7 Solute migration and elution
37(8)
2.8 Peak spacing and reversal of elution order
45(3)
2.9 Peak width
48(19)
2.10 Performance metrics
67(6)
2.11 Optimization
73(26)
References
92(7)
3 Column technology: open-tubular columns
Frank L. Dorman
Peter Dawes
3.1 Introduction
99(1)
3.2 Overview of the fused-silica drawing process
100(1)
3.3 The preform---raw material
100(1)
3.4 Surface chemistry
101(1)
3.5 Drawing of the capillary from the preform
101(2)
3.6 Protective coating
103(1)
3.7 Alternative protective coatings
104(1)
3.8 Cleanroom environment
105(1)
3.9 Quality monitoring
105(2)
3.10 Observations on handling of fused-silica capillary tubing
107(1)
3.11 Column technology---coating the stationary phase
108(3)
3.12 Stationary phases
111(1)
3.13 Coating techniques
112(2)
3.14 Column technology---quality evaluation
114(2)
3.15 Column technology---summary
116(1)
References
116(1)
4 Column technology: porous layer open-tubular columns
Jaap De Zeeuw
4.1 Introduction
117(1)
4.2 Challenges in porous layer open-tubular (PLOT) column chemistry
117(2)
4.3 Measurement of restriction of PLOT columns
119(1)
4.4 Manufacture of PLOT columns
119(2)
4.5 Stabilization of adsorption layers
121(1)
4.6 Behavior of adsorbents
122(1)
4.7 PLOT columns in gas chromatography---mass spectrometry
123(1)
4.8 Types of capillary tubing
123(1)
4.9 Most commonly used adsorbents
124(14)
4.10 Summary
138(3)
References
140(1)
5 Column technology: packed columns
Colin F. Poole
5.1 Introduction
141(1)
5.2 Gas---liquid chromatography
142(16)
5.3 Gas---solid chromatography
158(7)
References
161(4)
6 Column classification and structure-retention relationships
Colin F. Poole
6.1 Introduction
165(2)
6.2 Stationary-phase classification
167(14)
6.3 Structure---retention relationships
181(10)
References
186(5)
7 Multidimensional and comprehensive gas chromatography
John V. Seeley
7.1 Introduction
191(2)
7.2 A graphical representation of 2D GC separations
193(2)
7.3 Backflushing 2D GC
195(5)
7.4 Heartcutting 2D GC
200(3)
7.5 Comprehensive 2D GC
203(8)
7.6 Conclusions
211(6)
References
213(4)
8 Sample introduction methods
Andrew Tipler
8.1 Introduction
217(1)
8.2 Choosing a sample introduction system
218(1)
8.3 Supporting devices
218(5)
8.4 The cold on-column injector
223(6)
8.5 The flash vaporization injector
229(2)
8.6 The split/splitless injector
231(9)
8.7 The programmable-temperature vaporizing (PTV) injector
240(6)
8.8 The gas sampling valve
246(1)
8.9 The liquid sampling valve
247(4)
Acknowledgments
247(2)
References
249(2)
9 Headspace gas chromatography
Michael J. Sithersingh
Nicholas H. Snow
9.1 Introduction
251(2)
9.2 Fundamentals of headspace extraction
253(4)
9.3 Instrumentation and practice
257(5)
9.4 Method development considerations
262(5)
Acknowledgments
264(1)
References
264(3)
10 Thermal desorption gas chromatography
Elizabeth Woolfenden
10.1 General introduction to thermal desorption
267(3)
10.2 Brief history of thermal desorption---essential functions and performance characteristics
270(6)
10.3 The evolution of TD technology---important milestones
276(9)
10.4 Using thermal desorption to enhance analysis of complex liquid and solid samples
285(3)
10.5 Sampling options for thermal desorption
288(1)
10.6 An introduction to thermal desorption applications
288(2)
10.7 Breath monitoring
290(1)
10.8 Air monitoring
291(4)
10.9 Chemical emissions from everyday products to indoor and in-vehicle air
295(4)
10.10 Toxic chemical agents and civil defense
299(1)
10.11 Direct thermal desorption of residual volatiles
299(2)
10.12 Odor/fragrance profiling and VOC "fingerprinting"
301(5)
10.13 Forensic applications
306(3)
10.14 Monitoring manufacturing and other industrial chemical processes
309(16)
Appendix A
309(5)
Appendix B
314(2)
References
316(9)
11 Pyrolysis-gas chromatography
Karen D. Sam
11.1 Introduction
325(1)
11.2 Molecular theory
326(3)
11.3 Instrumentation
329(1)
11.4 Applications
330(13)
References
342(1)
12 Conventional detectors for gas chromatography
Colin F. Poole
12.1 Introduction
343(2)
12.2 Ionization-based detectors
345(13)
12.3 Bulk physical property detectors
358(2)
12.4 Optical detectors
360(6)
12.5 Electrochemical detectors
366(5)
References
367(4)
13 Molecular spectroscopic detectors for gas chromatography
Ariel M. O'Brien
Kevin A. Schug
13.1 Introduction
371(1)
13.2 Milestones
372(1)
13.3 Gas chromatography Fourier transform infrared spectroscopy
373(9)
13.4 Gas chromatography vacuum ultraviolet spectroscopy
382(8)
13.5 Comparison of techniques
390(4)
13.6 Conclusions and future outlook
394(5)
References
394(5)
14 Mass spectrometric detectors for gas chromatography
David J. Harvey
14.1 Introduction
399(1)
14.2 Gas chromatography---mass spectrometry interfaces
399(3)
14.3 Ionization techniques
402(7)
14.4 Methods of mass separation
409(5)
14.5 Modes of operation
414(3)
14.6 Data analysis
417(3)
14.7 Sample preparation
420(1)
14.8 Conclusions
420(5)
References
423(2)
15 Ion mobility detectors for gas chromatography
Maria Jose Cardador
Natividad Jurado-Campos
Lourdes Arce
15.1 Introduction
425(1)
15.2 IMS operation
426(1)
15.3 IMS device components
427(3)
15.4 Types of IMS instruments
430(2)
15.5 Limitations of IMS
432(1)
15.6 Fundamentals of GC-IMS
432(1)
15.7 Types of IMS coupled to GC
433(1)
15.8 Data obtained from GC-IMS instruments
434(1)
15.9 Treatment of IMS data
435(3)
15.10 Advantages and disadvantages of GC-IMS analysis
438(1)
15.11 Applications
439(10)
References
442(7)
16 Speciation and element-selective detection by gas chromatography
Qilin Chan
Joseph A. Caruso
16.1 Introduction to plasma-based detectors
449(2)
16.2 GC-ICPMS
451(3)
16.3 GC-MIP and GC-GD
454(3)
16.4 Sample preparation for GC---plasma spectroscopy
457(1)
16.5 Advances in applications of GC---plasma spectroscopy
457(5)
16.6 Conclusions and perspectives
462(7)
References
462(7)
17 Field and portable instruments for gas chromatography
Stanley D. Stearns
17.1 History
469(3)
17.2 Design challenges
472(1)
17.3 Sample introduction
472(2)
17.4 Column configurations
474(2)
17.5 Detectors
476(1)
17.6 Gas supply
477(1)
17.7 Power management
478(3)
17.8 Prototyping
481(1)
17.9 Commercial portable GCs currently available
482(1)
17.10 Future trends
482(5)
Acknowledgments
485(1)
References
485(2)
18 Preparative gas chromatography
Leesun Kim
Philip J. Marriott
18.1 Introduction
487(1)
18.2 Application scale of preparative gas chromatography
488(1)
18.3 Experimental techniques for analytical-scale prep-GC
489(5)
18.4 Case studies: applications
494(8)
18.5 Conclusions
502(3)
Acknowledgments
502(1)
References
502(3)
19 Data acquisition and integration
Yuri Kalamret
19.1 Introduction
505(1)
19.2 Equipment control and signal measurement
506(2)
19.3 Peak search
508(4)
19.4 Errors caused by discretization (data rate) and conversion (bit price value)
512(2)
19.5 Smoothing
514(3)
19.6 Peak identification
517(1)
19.7 Quantification
518(7)
References
521(4)
20 Data analysis methods for gas chromatography
Karisa M. Pierce
Timothy J. Trinklein
Jeremy S. Nadeau
Robert E. Synovec
20.1 Introduction
525(2)
20.2 Preprocessing
527(6)
20.3 Pattern recognition
533(7)
20.4 Calibration
540(1)
20.5 Experimental method optimization
541(1)
20.6 Conclusion
542(1)
References
542(5)
21 Validation of gas chromatographic methods
Bieke Dejaegher
Johanna Smeyers-Verbeke
Yvan Vander Heyden
21.1 Introduction
547(1)
21.2 Regulatory aspects
548(1)
21.3 Method validation items
548(11)
21.4 Accuracy profiles
559(2)
References
559(2)
22 Physicochemical measurements (inverse gas chromatography)
Adam Voelkel
22.1 Introduction
561(1)
22.2 Gas---solid inverse gas chromatography
562(7)
22.3 Bulk properties of polymers and polymers blends
569(12)
References
573(8)
23 Separation of stereoisomers by gas chromatography
Cecilia Cagliero
Barbara Sgorbini
Chiara Cordero
Erica Liberto
Patrizia Rubiolo
Carlo Bicchi
23.1 Introduction
581(2)
23.2 Chiral stationary phases for enantioselective gas chromatography
583(12)
23.3 Determination of the enantiomeric distribution
595(1)
23.4 Strategy for achieving chiral recognition
596(8)
23.5 Total analysis systems and chiral recognition of complex samples
604(1)
23.6 Micropreparative enantioselective gas chromatography
604(2)
23.7 Conclusions
606(9)
References
606(9)
24 Sample preparation for gas chromatography
Colin F. Poole
24.1 Introduction
615(1)
24.2 Isolation and concentration techniques using physical methods
616(19)
24.3 Sample cleanup by column chromatography
635(3)
24.4 Microchemical reactions for modification of target compound
638(17)
References
648(7)
25 Petrochemical applications of gas chromatography
Juliana Crucello
Nathalia De Aguiar Porto
Rogerio Mesquita Carvalho
Alexandre De Andrade Ferreira
Carlos Alberto Carbonezi
Leandro Wang Hantao
25.1 Introduction
655(4)
25.2 Column selection according to sample volatility
659(1)
25.3 Introduction to organic geochemical analyses
660(3)
25.4 Refinery oil assays
663(12)
References
669(6)
26 Gas chromatographic analysis of essential oils
K. Husnu Can Baser
Temel Ozek
26.1 Definitions: what is essential oil? What are fragrances?
675(1)
26.2 GC phases used in the analysis of essential oils and aroma chemicals
676(1)
26.3 Separation criteria and techniques
676(3)
26.4 Retention Index
679(1)
26.5 Qualitative and quantitative aspects
679(1)
26.6 GC-MS libraries
679(1)
26.7 Conclusions
680(3)
References
681(2)
27 Gas chromatographic analysis of lipids
Cristina Cruz-Hernandez
Frederic Destaillats
27.1 Introduction
683(1)
27.2 Fatty acid analysis by GC as methyl ester derivatives
684(6)
27.3 Analysis of free fatty acids and acylglycerols
690(1)
27.4 Analysis of sterols, sterol esters, stanyl esters, and steryl glycosides
691(2)
27.5 Analysis of waxes
693(10)
References
693(10)
28 Gas chromatographic analysis of carbohydrates
A.C. Soria
A. Mena
A.I. Ruiz-Matute
M.L. Sanz
28.1 Introduction
703(1)
28.2 Sample preparation
704(4)
28.3 Derivatization
708(5)
28.4 Chromatographic conditions for the analysis of carbohydrates
713(3)
28.5 Structural elucidation of low-molecular-weight carbohydrates
716(3)
28.6 GC-MS analysis of oligo-and polysaccharides
719(1)
28.7 Comprehensive two-dimensional gas chromatography
720(7)
References
721(6)
29 Gas chromatographic applications in metabolomics
Sze Han Lee
Mainak Mal
Kishore Kumar Pasikanti
Eric: Chun Yong Ci Ian
29.1 Overview of metabonomics
727(1)
29.2 Analytical tools in metabonomic research
728(1)
29.3 GC-MS-based metabonomics
728(5)
29.4 Metabonomics of solid samples
733(2)
29.5 Metabonomics of liquid samples
735(2)
29.6 Future directions
737(8)
References
737(8)
30 Applications of gas chromatography in forensic science
Abuzar Kabir
Kenneth G. Furton
30.1 Introduction and scope
745(2)
30.2 Analysis of hulk drug for identification, impurity profiling, and drug intelligence purpose
747(6)
30.3 Gas chromatography in forensic toxicology
753(7)
30.4 Analysis of ignitable liquid residues from fire debris
760(1)
30.5 Analysis of explosives
761(3)
30.6 Gas chromatographic analysis of organic gunshot residues (OGSRs)
764(3)
30.7 Analysis of forensic trace evidence
767(1)
30.8 Forensic environmental analysis
768(4)
30.9 Analysis of human odor profile
772(2)
30.10 Analysis of human decomposition products
774(2)
30.11 Field-portable gas chromatograph for onsite sample analysis
776(1)
30.12 Gas chromatography in food forensics
777(1)
30.1 3 Analysis of chemical warfare agents (CWAs)
778(1)
30.14 New developments in gas chromatography with forensic implications
779(14)
References
780(13)
31 Applications of gas chromatography to multiresidue methods for pesticides and related compounds in food
Milagros Mezcua
M. Angeles Martinez-Uroz
Amadeo R. Fernandez-Alba
31.1 Introduction
793(1)
31.2 Multiresidue methods for pesticides in crops
794(4)
31.3 Multiresidue methods for pesticides in animal origin products
798(1)
31.4 Multiresidue methods for pesticides in processed food
799(3)
31.5 Multiresidue methods for pesticides in baby food
802(2)
31.6 Conclusions
804(3)
Acknowledgments
804(1)
References
804(3)
32 Gas chromatographic analysis of wine
Susan E. Ebeler
32.1 Introduction
807(1)
32.2 Stationary phases
808(2)
32.3 Multidimensional separations
810(2)
32.4 Detectors and hyphenated techniques
812(3)
32.5 Sample preparation
815(21)
Summary
821(1)
References
822(14)
33 Gas chromatographic analysis of emerging and persistent environmental contaminants
Frank L. Torman
Eric J. Reiner
33.1 Introduction
836(2)
33.2 Polychlorinated biphenyls
838(5)
33.3 Dioxins
843(5)
33.4 Organochlorine pesticides
848(3)
33.5 Halogenated flame retardants
851(2)
33.6 Polybrominated diphenyl ethers
853(1)
33.7 Other halogenated flame retardants
853(6)
33.8 Perfluorinated compounds
859(1)
33.9 Polycyclic aromatic hydrocarbons
859(2)
33.10 Other compounds not specifically discussed
861(1)
33.11 Summary
861(4)
References
862(3)
34 Gas chromatography in space exploration
Maria Chiara Pietrogrande
34.1 Introduction
865(1)
34.2 Technological and operating constraints in space GC
866(1)
34.3 Prebiotic chemistry in Titan's atmosphere: the Cassini---Huygens mission
867(1)
34.4 Prebiotic chemistry in comet environments: Rosetta mission
867(2)
34.5 Search for key chemical biomarkers: Mars exploration
869(2)
34.6 Search for chirality in space
871(1)
34.7 Conclusions and perspectives
872(3)
References
872(3)
35 Gas chromatographic analysis of chemical warfare agents
Philip A. Smith
35.1 Introduction and background
875(12)
35.2 Analytical considerations for sampling and gas chromatographic analysis of CWA-related compounds
887(8)
35.3 GC applications for biomedical CWA analyses
895(1)
35.4 Conclusion
896(1)
References 896(5)
Index 901
Professor Colin Poole is internationally known in the field of thin-layer chromatography and is an editor of the Journal of Chromatography and former editor of the Journal of Planar Chromatography Modern TLC. He has authored several books on chromatography, recent examples being The Essence of Chromatography published by Elsevier (2003), and Gas Chromatography published by Elsevier (2012). He is the author of approximately 400 research articles, many of which deal with thin-layer chromatography, and is co-chair of the biennial International Symposium on High-Performance Thin-Layer Chromatography”.