Muutke küpsiste eelistusi

Gauge Invariance and Weyl-polymer Quantization 1st ed. 2016 [Pehme köide]

  • Formaat: Paperback / softback, 97 pages, kõrgus x laius: 235x155 mm, kaal: 1766 g, X, 97 p., 1 Paperback / softback
  • Sari: Lecture Notes in Physics 904
  • Ilmumisaeg: 13-Nov-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319176943
  • ISBN-13: 9783319176949
  • Pehme köide
  • Hind: 34,80 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 40,94 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 97 pages, kõrgus x laius: 235x155 mm, kaal: 1766 g, X, 97 p., 1 Paperback / softback
  • Sari: Lecture Notes in Physics 904
  • Ilmumisaeg: 13-Nov-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319176943
  • ISBN-13: 9783319176949
The book gives an introduction to Weyl non-regular quantization suitable for the description of physically interesting quantum systems, where the traditional Dirac-Heisenberg quantization is not applicable. The latter implicitly assumes that the canonical variables describe observables, entailing necessarily the regularity of their exponentials (Weyl operators). However, in physically interesting cases -- typically in the presence of a gauge symmetry -- non-observable canonical variables are introduced for the description of the states, namely of the relevant representations of the observable algebra.

In general, a gauge invariant ground state defines a non-regular representation of the gauge dependent Weyl operators, providing a mathematically consistent treatment of familiar quantum systems -- such as the electron in a periodic potential (Bloch electron), the Quantum Hall electron, or the quantum particle on a circle -- where the gauge transformations are, respectively, the lattice translations, the magnetic translations and the rotations of 2.

Relevant examples are also provided by quantum gauge field theory models, in particular by the temporal gauge of Quantum Electrodynamics, avoiding the conflict between the Gauss law constraint and the Dirac-Heisenberg canonical quantization. The same applies to Quantum Chromodynamics, where the non-regular quantization of the temporal gauge provides a simple solution of the U(1) problem and a simple link between the vacuum structure and the topology of the gauge group.

Last but not least, Weyl non-regular quantization is briefly discussed from the perspective of the so-called polymer representations proposed for Loop Quantum Gravity in connection with diffeomorphism invariant vacuum states.
1 Heisenberg Quantization and Weyl Quantization
1(10)
1 Heisenberg and Weyl Quantizations
1(2)
2 * From Heisenberg to Weyl Quantization
3(3)
3 Stone-von Neumann Theorem and Schrodinger Quantum Mechanics
6(5)
2 Delocalization, Gauge Invariance and Non-regular Representations
11(24)
1 Delocalization and Gauge Invariance
11(2)
2 The Representation Defined by a Translationally Invariant State
13(2)
3 Bloch Electron and Non-regular Quantization
15(5)
4 Gauge Invariance and Non-regular Canonical Quantization
20(9)
4.1 Gauge Invariance and Superselection Rules
20(1)
4.2 Gauge Invariance in the Two-Body Problem
21(1)
4.3 Non-regular Representations and Symmetry Breaking
22(2)
4.4 Goldstone Theorem and Non-regular Representations
24(3)
4.5 Bloch Electron as a Gauge Model
27(2)
5 Quantum Hall Electron: Zak States
29(6)
3 Quantum Mechanical Gauge Models
35(18)
1 Quantum Particle on a Circle
35(3)
2 Jackiw Model of Gauss Law Constraint
38(3)
3 Christ-Lee Model
41(2)
4 A QM Model of QCD Structures and of Josephson Effect
43(10)
4 Non-regular Representations in Quantum Field Theory
53(24)
1 Quantum Field Algebras and Quantizations
53(4)
2 Massless Scalar Field in 1 + 1 Dimensions
57(3)
3 Temporal Gauge in QED
60(4)
4 Temporal Gauge in QCD: Chiral Symmetry Breaking
64(10)
4.1 Gauss Law and Gauge Transformations
64(4)
4.2 Large Gauge Transformations
68(3)
4.3 Fermions and Chiral Symmetry Breaking
71(3)
5 Abelian Chern-Simons Theory
74(3)
5 Diffeomorphism Invariance and Weyl Polymer Quantization
77(8)
1 Diffeomorphism Invariance and Weyl Polymer Quantization
77(1)
2 Quantum Mechanics on a Manifold and Diffeomorphism Invariance
78(7)
6 * A Generalization of the Stone-von Neumann Theorem
85(6)
1 Zak Algebra
85(1)
2 A Generalization of Stone-von Neumann Theorem
86(5)
Bibliography 91(4)
Index 95