Muutke küpsiste eelistusi

General Theory of Fluid Mechanics 2021 ed. [Pehme köide]

  • Formaat: Paperback / softback, 649 pages, kõrgus x laius: 235x155 mm, kaal: 1003 g, 550 Illustrations, color; 156 Illustrations, black and white; XIV, 649 p. 706 illus., 550 illus. in color., 1 Paperback / softback
  • Ilmumisaeg: 03-Apr-2022
  • Kirjastus: Springer Verlag, Singapore
  • ISBN-10: 9813366621
  • ISBN-13: 9789813366626
Teised raamatud teemal:
  • Pehme köide
  • Hind: 53,33 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 62,74 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 649 pages, kõrgus x laius: 235x155 mm, kaal: 1003 g, 550 Illustrations, color; 156 Illustrations, black and white; XIV, 649 p. 706 illus., 550 illus. in color., 1 Paperback / softback
  • Ilmumisaeg: 03-Apr-2022
  • Kirjastus: Springer Verlag, Singapore
  • ISBN-10: 9813366621
  • ISBN-13: 9789813366626
Teised raamatud teemal:

This book provides a general introduction to fluid mechanics in the form of biographies and popular science. Based on the author’s extensive teaching experience, it combines natural science and human history, knowledge inheritance and cognition law to replace abstract concepts of fluid mechanics with intuitive and understandable physical concepts. In seven chapters, it describes the development of fluid mechanics, aerodynamics, hydrodynamics, computational fluid dynamics, experimental fluid dynamics, wind tunnel and water tunnel equipment, the mystery of flight and aerodynamic principles, and leading figures in fluid mechanics in order to spark beginners’ interest and allow them to gain a comprehensive understanding of the field’s development. It also provides a list of references for further study.

1 Foundation of Fluid Mechanics
1(78)
1.1 Combination of Early Development of Fluid Dynamics with Calculus
1(5)
1.2 Methods of Describing Fluid Motion
6(7)
1.3 Establishment and Application of Differential Equations for Ideal Fluid Motion
13(13)
1.4 Differential Equation of Viscous Fluid Motion and Vortex Transport Equation
26(6)
1.5 Establishment and Application of Boundary Layer Theory
32(7)
1.6 Laminar Flow Transition Phenomenon and Stability Theory
39(5)
1.7 Turbulence Phenomenon and Its Characteristics
44(7)
1.8 Statistical Theory of Turbulence
51(6)
1.9 Engineering Turbulence Theory
57(4)
1.10 Turbulence Model
61(6)
1.11 Turbulence Advanced Numerical Simulation Technology
67(2)
1.12 Multi-scale Discussions of Turbulent Eddies
69(10)
2 Aerodynamics
79(96)
2.1 Development of Aerodynamics
79(5)
2.2 Low-Speed Airfoil Flow
84(13)
2.3 Development and Influence Mechanism of Boundary Layer Near Airfoil Surface
97(11)
2.4 Low-Speed Flow Around Wing
108(9)
2.5 Basic Theory of Compressible Flow
117(18)
2.6 Solution of Compressible Flow
135(3)
2.7 Hypersonic Aerodynamics
138(6)
2.8 Principle of Aeroacoustics
144(9)
2.9 Stall Characteristics of Low-Speed Airfoil and Wing
153(8)
2.10 Interaction Between Shock Wave and Boundary Layer in Supersonic Flow
161(10)
2.11 The Leading Role of Aerodynamics in the Development of Modern Aircraft
171(4)
3 Hydrodynamics
175(122)
3.1 Development of Hydrodynamics
175(5)
3.2 Liquid Motion
180(4)
3.2.1 Ideal Liquid Motion
180(1)
3.2.2 Viscous Liquid Motion
180(1)
3.2.3 Cavitation and Cavitation Erosion
181(1)
3.2.4 Multiphase Flow
181(1)
3.2.5 Non-newtonian Fluid Flow
182(1)
3.2.6 Non Pressure Flow (Open Flow)
183(1)
3.2.7 Pressure Flow
183(1)
3.2.8 Flow Induced Vibration (Hydroelastic Problem)
184(1)
3.3 One-Dimensional Flow Theory and Mechanical Energy Loss
184(8)
3.3.1 Theory of One-Dimensional Flow
184(3)
3.3.2 Mechanical Energy Loss
187(5)
3.4 Steady Flow Along a Pressure Pipeline
192(5)
3.4.1 Simple Pipe Flow
192(2)
3.4.2 Water Pump System
194(2)
3.4.3 Water Turbine System
196(1)
3.5 Steady Flow in Open Channel
197(31)
3.5.1 Overview
197(2)
3.5.2 Steady Uniform Flow in Open Channel
199(2)
3.5.3 Steady Nonuniform Gradually Varied Flow
201(5)
3.5.4 Water Surface Curves for the Steady Gradually Varied Flow
206(2)
3.5.5 Rapidly Varied Flow in the Open Channel
208(20)
3.6 Unsteady Flow in a Pressure Pipeline
228(10)
3.6.1 Overview
228(3)
3.6.2 Basic Equation of One-Dimensional Unsteady Flow
231(2)
3.6.3 Water Hammer and Its Governing Equations
233(3)
3.6.4 Water Oscillating Flow
236(2)
3.7 Unsteady Gradually Varied Flow in Open Channel
238(4)
3.7.1 Overview
238(1)
3.7.2 Differential Equation of Unsteady Gradually Varied Flow
239(3)
3.8 Fundamentals of Water Wave Hydrodynamics
242(40)
3.8.1 Overview
242(3)
3.8.2 Basic Characteristics of Wave Motion
245(3)
3.8.3 Types of Waves
248(4)
3.8.4 Linear Wave Theory (Micro Amplitude Wave Theory)
252(12)
3.8.5 Wave with Finite Amplitude
264(11)
3.8.6 Solitary Wave
275(7)
3.9 Applications in Hydraulics
282(15)
3.9.1 Water Resources and Hydropower Engineering
282(2)
3.9.2 Ship Engineering
284(2)
3.9.3 Lubrication and Hydraulic Transmission
286(2)
3.9.4 Marine and Coastal Engineering
288(9)
4 Computational Fluid Dynamics
297(36)
4.1 Derivation of Computational Fluid Dynamics
297(3)
4.2 Discrete Techniques and Iterative Methods
300(4)
4.3 Application of Computational Fluid Dynamics
304(8)
4.3.1 Numerical Solution of Low Velocity Flow
304(5)
4.3.2 Numerical Solution of Transonic Flow
309(1)
4.3.3 Numerical Solution of Supersonic Flow
310(2)
4.4 Commercial Software for Computational Fluid Dynamics
312(4)
4.5 Numerical Simulation of Flow Field for a Large Axial Flow Fan
316(5)
4.5.1 Problem Description
316(1)
4.5.2 The Physical Model
316(1)
4.5.3 Mesh Generation and Boundary Conditions
317(1)
4.5.4 Results
318(3)
4.6 Numerical Simulation of Flow-Field in a Large Lowspeed Closed-Circuit Aeroacoustics Wind Tunnel
321(12)
4.6.1 Problem Description
321(2)
4.6.2 The Physical Model
323(2)
4.6.3 Mesh Generation and Boundary Conditions
325(1)
4.6.4 Results
325(8)
5 Experimental Fluid Mechanics
333(48)
5.1 Classical Fluid Mechanics Experiment
333(6)
5.2 Similarity Principle
339(5)
5.3 Application of Similarity Theory
344(5)
5.4 Flow Visualization Measurement Technique
349(12)
5.5 Flow Velocimetry Technique
361(8)
5.6 Experimental Measurement Method for Dynamic Forces
369(4)
5.7 Test Error Analysis
373(8)
6 Wind and Water Tunnel Equipment
381(64)
6.1 Development of Wind Tunnel Equipment
381(5)
6.2 Wind Tunnel Type
386(6)
6.3 Low-Speed Wind Tunnel
392(9)
6.4 Introduction to Typical Low-Speed Wind Tunnels
401(16)
6.5 Supersonic Wind Tunnel
417(3)
6.6 Transonic Wind Tunnel
420(11)
6.7 Hypersonic Wind Tunnel
431(5)
6.8 Variable Density Wind Tunnel
436(5)
6.9 Water Tunnel (or Channel) Equipment
441(4)
7 Flight Mystery and Aerodynamic Principles
445(136)
7.1 Flying Fantasy
445(5)
7.2 Exploratory Cognition of Flight
450(4)
7.3 Rapid Development of Aircraft
454(6)
7.4 Flight Principle
460(16)
7.5 Wing Shape and Aerodynamic Coefficient
476(8)
7.6 Supercritical Wing
484(11)
7.7 Winglet
495(3)
7.8 Slender Fuselage
498(3)
7.9 Moment in Stable Flight and Tail
501(6)
7.10 Demand of Aircraft Power (Engine)
507(7)
7.11 High-Lift Device of an Aircraft
514(13)
7.12 Aircraft Landing Gear
527(10)
7.13 Aircraft Aerodynamic Noise
537(11)
7.14 Supersonic Aircraft
548(7)
7.15 Drag Reduction Technology for Large Transport Aircraft
555(26)
8 Introduction to Celebrities in Fluid Mechanics
581(62)
8.1 Archimedes (287-212 B.C.)
581(1)
8.2 Leonardo Da Vinci (1451-1519)
582(1)
8.3 Galileo (1564-1642)
583(2)
8.4 Pascal (1623-1662)
585(1)
8.5 Newton (1643-1727)
586(1)
8.6 Leibniz (1646-1716)
587(1)
8.7 Bernoulli (1700-1782)
588(1)
8.8 Euler (1707-1783)
589(1)
8.9 D'Alembert (1717-1783)
590(1)
8.10 Lagrange (1736-1813)
591(1)
8.11 Laplace (1749-1827)
592(1)
8.12 Kelly (1773-1857)
593(1)
8.13 Gauss (1777-1855)
594(2)
8.14 Poisson (1781-1840)
596(1)
8.15 Navier (1785-1836)
597(1)
8.16 Cauchy (1789-1857)
598(2)
8.17 Saint-Venant (1797-1886)
600(1)
8.18 Poiseuille (1799-1869)
601(1)
8.19 Darcy (1803-1858)
602(1)
8.20 Froude (1810-1879)
603(1)
8.21 Stokes (1819-1903)
604(1)
8.22 Helmholtz (1821-1894)
604(2)
8.23 Kelvin (1824-1907)
606(1)
8.24 Riemann (1826-1866)
607(2)
8.25 Langley (1834-1906)
609(1)
8.26 Mach (1838-1916)
610(1)
8.27 Reynolds (1842-1912)
611(1)
8.28 Rayleigh (1842-1919)
612(1)
8.29 Boussinesq (1842-1929)
613(1)
8.30 Laval (1845-1913)
614(1)
8.31 Joukowski (1847-1921)
615(1)
8.32 Lilienthal (1848-1996)
616(1)
8.33 Lamb (1849-1934)
617(1)
8.34 Lorentz (1853-1928)
618(2)
8.35 The Wright Brothers (1867-1912, 1871-1948)
620(1)
8.36 Lanchester (1868-1946)
621(1)
8.37 Prandtl (1875-1953)
622(1)
8.38 Karman (1881-1963)
622(2)
8.39 Taylor (1886-1975)
624(1)
8.40 Zhou Peiyuan (1902-1993)
625(1)
8.41 Kolmogorov (1903-1987)
626(2)
8.42 Whittle (1907-1996)
628(1)
8.43 Schlichting (1907-1982)
629(1)
8.44 Landau (1908-1968)
630(1)
8.45 GuoYonghuai (1909-1968)
631(1)
8.46 QianXuesen (1911-2009)
632(2)
8.47 LuShijia (1911-1986)
634(2)
8.48 Shen Yuan (1916-2004)
636(1)
8.49 Batchelor (1920-2000)
636(1)
8.50 Whitcomb (1921-2009)
637(1)
8.51 Lighthill (1924-1998)
638(1)
8.52 Zhuang Fenggan (1925-2010)
639(4)
Bibliography 643
Peiqing Liu received his D.Eng. from Tsinghua University in 1995, and is currently a Professor at the School of Aeronautic Science and Engineering, Beihang University. Since 1997, he has worked at the Institute of Fluid mechanics at Beijing University of Aeronautics and Astronautics. He has been engaged in aerodynamics, hydrodynamic experiments and numerical simulation for many years and has been involved in NSFC key projects, general projects, national defense pre-research and national defense foundation research on complex flows (vortex separation and control, high-speed laminar flow control technology, etc.). His main interests include modern aircraft vortex separation and control technology, high-speed, laminar flow control technology; efficient, lightweight propeller design and optimization technologies; and large aircraft aerodynamic characteristics, ground effect and ditching. He has published more than 200 papers in national and international journals and 8 books, and he holds 19 national invention patents.