Muutke küpsiste eelistusi

Generalized Manifolds: Generalized Manifold Theory with Applications to Dynamical Systems, General Relativity and Twistor Theory illustrated edition [Kõva köide]

(University of Wuppertal)
  • Formaat: Hardback, 128 pages, kõrgus x laius x paksus: 279x216x9 mm, kaal: 204 g, list of symbols, bibliography, index, Contains 372 Hardbacks
  • Sari: Chapman & Hall/CRC Research Notes in Mathematics Series 372
  • Ilmumisaeg: 19-Sep-1997
  • Kirjastus: CRC Press
  • ISBN-10: 0582320003
  • ISBN-13: 9780582320000
  • Kõva köide
  • Hind: 158,50 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 128 pages, kõrgus x laius x paksus: 279x216x9 mm, kaal: 204 g, list of symbols, bibliography, index, Contains 372 Hardbacks
  • Sari: Chapman & Hall/CRC Research Notes in Mathematics Series 372
  • Ilmumisaeg: 19-Sep-1997
  • Kirjastus: CRC Press
  • ISBN-10: 0582320003
  • ISBN-13: 9780582320000
In this Research Note, a generalization of the subject of differential geometry is developed, using techniques and results of nonstandard analysis. This generalization is found to correspond to approximations of classical manifolds by set-theoretic near manifold structures. Schlesinger develops several applications of the theory in the fields of topological dynamical systems, the question of stability of geodesic incompleteness (which is relevant to the problem of singularities in general relativity) and the deformation theory of manifolds. In the latter case, deformations induced by first cohomology can be introduced without encountering the restriction to compact manifolds as in the case of classical Kodaira-Spencer theory. This new deformation theory is then applied to a problem in twistor theory, thereby achieving a generalization of the nonlinear graviton construction of Penrose.
Preface
1 Introduction
1(20)
1.1 Motivation and Overview
1(4)
1.2 The basics of nonstandard analysis
5(9)
1.3 Some notions of topological dynamics
14(3)
1.4 Fundamentals of twistor theory
17(4)
2 The Case of nonstandard analogs of compact submanifolds of R(n)
21(18)
2.1 Completing the space of compact C(1)-submanifolds
21(12)
2.2 Directly generalizing the submanifold concept
33(6)
3 The general nonstandard manifold concept
39(26)
3.1 The basic theory
39(16)
3.2 Nonstandard analogs of the tangent bundle and of (Pseudo-) Riemannian structures
55(10)
4 Some applications to nonstandard topological dynamics
65(4)
5 The cohomology group H(1) (M, Theta)
69(16)
6 The question of stability of geodesic incompleteness
85(12)
7 An application to twistor theory
97(8)
A physical epilogue 105(2)
List of symbols
107(4)
Bibliography 111(4)
Index 115