Muutke küpsiste eelistusi

Generative Adversarial Learning: Architectures and Applications 2022 ed. [Kõva köide]

Edited by , Edited by , Edited by , Edited by
  • Formaat: Hardback, 355 pages, kõrgus x laius: 235x155 mm, kaal: 723 g, 132 Illustrations, color; 13 Illustrations, black and white; XIV, 355 p. 145 illus., 132 illus. in color., 1 Hardback
  • Sari: Intelligent Systems Reference Library 217
  • Ilmumisaeg: 08-Feb-2022
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030913899
  • ISBN-13: 9783030913892
Teised raamatud teemal:
  • Kõva köide
  • Hind: 169,14 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 198,99 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 355 pages, kõrgus x laius: 235x155 mm, kaal: 723 g, 132 Illustrations, color; 13 Illustrations, black and white; XIV, 355 p. 145 illus., 132 illus. in color., 1 Hardback
  • Sari: Intelligent Systems Reference Library 217
  • Ilmumisaeg: 08-Feb-2022
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030913899
  • ISBN-13: 9783030913892
Teised raamatud teemal:

This book provides a collection of recent research works addressing theoretical issues on improving the learning process and the generalization of GANs as well as state-of-the-art applications of GANs to various domains of real life. Adversarial learning fascinates the attention of machine learning communities across the world in recent years. Generative adversarial networks (GANs), as the main method of adversarial learning, achieve great success and popularity by exploiting a minimax learning concept, in which two networks compete with each other during the learning process. Their key capability is to generate new data and replicate available data distributions, which are needed in many practical applications, particularly in computer vision and signal processing. The book is intended for academics, practitioners, and research students in artificial intelligence looking to stay up to date with the latest advancements on GANs’ theoretical developments and their applications.


An Introduction to Generative Adversarial Learning: Architectures and
Applications.- Generative Adversarial Networks: A Survey on Training,
Variants, and Applications.- Fair Data Generation and Machine Learning
through Generative Adversarial Networks.