Muutke küpsiste eelistusi

Genetic Programming for Image Classification: An Automated Approach to Feature Learning 1st ed. 2021 [Pehme köide]

  • Formaat: Paperback / softback, 258 pages, kõrgus x laius: 235x155 mm, kaal: 444 g, 59 Illustrations, color; 33 Illustrations, black and white; XXVIII, 258 p. 92 illus., 59 illus. in color., 1 Paperback / softback
  • Sari: Adaptation, Learning, and Optimization 24
  • Ilmumisaeg: 10-Feb-2022
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030659291
  • ISBN-13: 9783030659295
Teised raamatud teemal:
  • Pehme köide
  • Hind: 141,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 166,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 258 pages, kõrgus x laius: 235x155 mm, kaal: 444 g, 59 Illustrations, color; 33 Illustrations, black and white; XXVIII, 258 p. 92 illus., 59 illus. in color., 1 Paperback / softback
  • Sari: Adaptation, Learning, and Optimization 24
  • Ilmumisaeg: 10-Feb-2022
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030659291
  • ISBN-13: 9783030659295
Teised raamatud teemal:

This book offers several new GP approaches to feature learning for image classification. Image classification is an important task in computer vision and machine learning with a wide range of applications. Feature learning is a fundamental step in image classification, but it is difficult due to the high variations of images. Genetic Programming (GP) is an evolutionary computation technique that can automatically evolve computer programs to solve any given problem. This is an important research field of GP and image classification. No book has been published in this field. This book shows how different techniques, e.g., image operators, ensembles, and surrogate, are proposed and employed to improve the accuracy and/or computational efficiency of GP for image classification. The proposed methods are applied to many different image classification tasks, and the effectiveness and interpretability of the learned models will be demonstrated. This book is suitable as a graduate and postgraduate level textbook in artificial intelligence, machine learning, computer vision, and evolutionary computation.   

 


Computer Vision and Machine Learning.- Evolutionary Computation and Genetic Programming.- Multi-Layer Representation for Binary Image Classification.- Evolutionary Deep Learning Using GP with Convolution Operators.- GP with Image Descriptors for Learning Global and Local Features.- GP with Image-Related Operators for Feature Learning.- GP for Simultaneous Feature Learning and Ensemble Learning.- Random Forest-Assisted GP for Feature Learning.- Conclusions and Future Directions.