Muutke küpsiste eelistusi

Genetic Programming Theory and Practice XXI 2025 ed. [Kõva köide]

Edited by , Edited by , Edited by , Edited by
  • Formaat: Hardback, 417 pages, kõrgus x laius: 235x155 mm, 142 Illustrations, color; 33 Illustrations, black and white; XIV, 417 p. 175 illus., 142 illus. in color., 1 Hardback
  • Sari: Genetic and Evolutionary Computation
  • Ilmumisaeg: 01-Mar-2025
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 9819600766
  • ISBN-13: 9789819600762
Teised raamatud teemal:
  • Kõva köide
  • Hind: 169,14 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 198,99 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 417 pages, kõrgus x laius: 235x155 mm, 142 Illustrations, color; 33 Illustrations, black and white; XIV, 417 p. 175 illus., 142 illus. in color., 1 Hardback
  • Sari: Genetic and Evolutionary Computation
  • Ilmumisaeg: 01-Mar-2025
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 9819600766
  • ISBN-13: 9789819600762
Teised raamatud teemal:
This book brings together some of the most impactful researchers in the field of genetic programming (GP), each one working on unique and interesting intersections of theoretical development and practical applications of this evolutionary-based machine learning paradigm. Topics of particular interest for this year´s book include powerful modeling techniques through GP-based symbolic regression, novel selection mechanisms that help guide the evolutionary process, modular approaches to GP, and applications in cybersecurity, biomedicine, and program synthesis, as well as papers by practitioner of GP that focus on usability and real-world results. In summary, readers will get a glimpse of the current state-of-the-art in GP research.
Chapter
1. Representation & Reachability: Assumption Impact in Data
Modeling.
Chapter
2. EvoFeat: Genetic Programming-based Feature Engineering
Approach to Tabular Data Classification.
Chapter
3.  Deep Learning-Based
Operators for Evolutionary Algorithms.
Chapter
4.  Survey of Genetic
Programming and Large Language Models.
Chapter
5.  Evolving Many-Model
Agents with Vector and Matrix Operations in Tangled Program Graphs.
Chapter
6.  Automatic Design of Autoencoders using NeuroEvolution.
Chapter
7. Code
Building Genetic Programming is Faster than PushGP.
Chapter
8.
Sharpness-Aware Minimization in Genetic Programming.
Chapter
9. Tree-Based
Grammatical Evolution with Non-Encoding Nodes.
Chapter
10.  Genetic
Programming with Memory for Approximate Data Reconstruction.
Chapter
11.
 Ratcheted Random Search for Self-Programming Boolean Networks.
Chapter
12.
 Exploring Non-Bloating Geometric Semantic Genetic Programming.
Chapter
13.
Revisiting Gradient-based Local Search in Symbolic Regression.
Chapter
14.
Its Time to Revisit the Use of FPGAs for Genetic Programming.
Chapter
15.
Interpretable Genetic Programming Models for Real-World

Biomedical Images.
Chapter
16. Crafting Generative Art through Genetic
Improvement: Managing Creative Outputs in Diverse Fitness Landscapes.-
Chapter
17.  Cell Regulation and the Early Evolution of Autonomous Control.-
Chapter
18.  How to Measure Explainability and Interpretability of Machine
Learning Results.
Chapter
19.  Lexicase Selection Parameter Analysis:
Varying Population Size and Test Case Redundancy with Diagnostic Metrics.-
Chapter
20.  Using lineage age to augment search space exploration in
lexicase selection.