Muutke küpsiste eelistusi

Geometric Singular Perturbation Theory Beyond the Standard Form 2020 ed. [Pehme köide]

  • Formaat: Paperback / softback, 137 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, 40 Illustrations, color; 2 Illustrations, black and white; X, 137 p. 42 illus., 40 illus. in color., 1 Paperback / softback
  • Sari: Frontiers in Applied Dynamical Systems: Reviews and Tutorials 6
  • Ilmumisaeg: 22-Feb-2020
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030363988
  • ISBN-13: 9783030363987
  • Pehme köide
  • Hind: 67,23 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 79,09 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 137 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, 40 Illustrations, color; 2 Illustrations, black and white; X, 137 p. 42 illus., 40 illus. in color., 1 Paperback / softback
  • Sari: Frontiers in Applied Dynamical Systems: Reviews and Tutorials 6
  • Ilmumisaeg: 22-Feb-2020
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030363988
  • ISBN-13: 9783030363987

This volume provides a comprehensive review of multiple-scale dynamical systems. Mathematical models of such multiple-scale systems are considered singular perturbation problems, and this volume focuses on the geometric approach known as Geometric Singular Perturbation Theory (GSPT).

It is the first of its kind that introduces the GSPT in a coordinate-independent manner. This is motivated by specific examples of biochemical reaction networks, electronic circuit and mechanic oscillator models and advection-reaction-diffusion models, all with an inherent non-uniform scale splitting, which identifies these examples as singular perturbation problems beyond the standard form. 

The contents cover a general framework for this GSPT beyond the standard form including canard theory, concrete applications, and instructive qualitative models. It contains many illustrations and key pointers to the existing literature. The target audience are senior undergraduates, graduate students and researchers interested in using the GSPT toolbox in nonlinear science, either from a theoretical or an application point of view. 

Martin Wechselberger is Professor at the School of Mathematics & Statistics, University of Sydney, Australia. He received the J.D. Crawford Prize in 2017 by the Society for Industrial and Applied Mathematics (SIAM) for achievements in the field of dynamical systems with multiple time-scales.


1 Introduction
1(4)
2 Motivating Examples
5(36)
2.1 Enzyme Kinetics
5(8)
2.1.1 Low Enzyme Concentration
7(3)
2.1.2 Slow Product Formation
10(3)
2.2 Relaxation Oscillators
13(21)
2.2.1 Van der Pol Oscillator
13(4)
2.2.2 Two-Stroke Oscillator
17(6)
2.2.3 Three Component Negative Feedback Oscillator
23(5)
2.2.4 Autocatalator
28(6)
2.3 Advection-Reaction-Diffusion (ARD) Models
34(7)
3 A Coordinate-Independent Setup for GSPT
41(20)
3.1 The Layer Problem
43(5)
3.2 The Reduced Problem
48(3)
3.3 A Slow-Fast Example in General Form
51(2)
3.4 Enzyme Kinetics with Slow Production Rate Revisited
53(1)
3.5 Slow Manifold Expansion and the Projection Operator
54(1)
3.6 Comparison with the Standard Case
55(2)
3.7 Local Transformation to Standard Form
57(2)
3.8 Normally Hyperbolic Results for 0 > ε ≥≥ 1
59(2)
4 Loss of Normal Hyperbolicity
61(16)
4.1 Layer Flow and Contact Points
61(6)
4.1.1 Contact of Order One and Its Comparison to the Standard Case
63(4)
4.2 Reduced Flow Near Contact Points
67(2)
4.2.1 Comparison with the Standard Case
69(1)
4.3 Travelling Waves in ARD Models Revisited
69(2)
4.4 Centre Manifold Reduction Near Contact Points
71(2)
4.5 Regular Jump Point Results for 0 > ε ≥≥ 1
73(4)
5 Relaxation Oscillations in the General Setting
77(16)
5.1 Two-Stroke Oscillator Revisited
78(2)
5.2 Three Component Negative Feedback Oscillator Revisited
80(5)
5.3 Autocatalator Revisited
85(8)
6 Pseudo Singularities and Canards
93(34)
6.1 Canard Theory: The Case k = 1
97(12)
6.1.1 Singular Andronov--Hopf Bifurcation and Canard Explosion
99(2)
6.1.2 Comparison with the Standard Case
101(2)
6.1.3 Canard Explosion in the Autocatalator Model
103(2)
6.1.4 A Variation of the Two-Stroke Oscillator
105(4)
6.2 Excitability and Dynamic Parameter Variation
109(4)
6.3 Canard Theory: The Case k < 2
113(8)
6.3.1 Pseudo Saddles
114(3)
6.3.2 Pseudo Nodes
117(3)
6.3.3 Pseudo Foci
120(1)
6.3.4 Pseudo Saddle-Nodes
120(1)
6.4 Two-Stroke Excitability with Dynamic Parameter Variation
121(6)
7 What We Did Not Discuss
127(4)
7.1 The `Other' Delayed Loss of Stability Phenomenon
127(1)
7.2 Algorithmic and Computational Aspects of GSPT
128(1)
7.3 More Than Two Time Scales
129(1)
7.4 Regularisation of Non-smooth Dynamical Systems
130(1)
7.5 Infinite Dimensional Dynamical Systems
130(1)
References 131