|
|
xiii | |
Foreword |
|
xvi | |
|
1 Introduction to Geostatistical Functional Data Analysis |
|
|
1 | (26) |
|
|
|
|
1 | (6) |
|
1.2 Spatial Geostatistics |
|
|
7 | (5) |
|
1.2.1 Regionalized Variables |
|
|
7 | (1) |
|
|
7 | (2) |
|
1.2.3 Stationarity and Intrinsic Hypothesis |
|
|
9 | (3) |
|
1.3 Spatiotemporal Geostatistics |
|
|
12 | (6) |
|
1.3.1 Relevant Spatiotemporal Concepts |
|
|
12 | (4) |
|
1.3.2 Spatiotemporal Kriging |
|
|
16 | (1) |
|
1.3.3 Spatiotemporal Covariance Models |
|
|
17 | (1) |
|
1.4 Functional Data Analysis in Brief |
|
|
18 | (9) |
|
|
22 | (5) |
|
Part I Mathematical and Statistical Foundations |
|
|
27 | (128) |
|
2 Mathematical Foundations of Functional Kriging in Hilbert Spaces and Riemannian Manifolds |
|
|
29 | (26) |
|
|
|
|
|
29 | (1) |
|
2.2 Definitions and Assumptions |
|
|
30 | (3) |
|
2.3 Kriging Prediction in Hilbert Space: A Trace Approach |
|
|
33 | (9) |
|
2.3.1 Ordinary and Universal Kriging in Hilbert Spaces |
|
|
33 | (3) |
|
2.3.2 Estimating the Drift |
|
|
36 | (1) |
|
2.3.3 An Example: Trace-Variogram in Sobolev Spaces |
|
|
37 | (2) |
|
2.3.4 An Application to Nonstationary Prediction of Temperatures Profiles |
|
|
39 | (3) |
|
2.4 An Operatorial Viewpoint to Kriging |
|
|
42 | (3) |
|
2.5 Kriging for Manifold-Valued Random Fields |
|
|
45 | (8) |
|
|
45 | (2) |
|
2.5.2 An Application to Positive Definite Matrices |
|
|
47 | (2) |
|
2.5.3 Validity of the Local Tangent Space Approximation |
|
|
49 | (4) |
|
2.6 Conclusion and Further Research |
|
|
53 | (2) |
|
|
53 | (2) |
|
3 Universal, Residual, and External Drift Functional Kriging |
|
|
55 | (18) |
|
|
|
|
56 | (1) |
|
3.2 Universal Kriging for Functional Data (UKFD) |
|
|
56 | (2) |
|
3.3 Residual Kriging for Functional Data (ResKFD) |
|
|
58 | (2) |
|
3.4 Functional Kriging with External Drift (FKED) |
|
|
60 | (1) |
|
3.5 Accounting for Spatial Dependence in Drift Estimation |
|
|
61 | (1) |
|
|
62 | (1) |
|
3.6 Uncertainty Evaluation |
|
|
62 | (2) |
|
3.7 Implementation Details in R |
|
|
64 | (5) |
|
3.7.1 Example: Air Pollution Data |
|
|
64 | (5) |
|
|
69 | (4) |
|
|
71 | (2) |
|
4 Extending Functional Kriging When Data Are Multivariate Curves: Some Technical Considerations and Operational Solutions |
|
|
73 | (31) |
|
|
|
|
|
73 | (1) |
|
4.2 Principal Component Analysis for Curves |
|
|
74 | (4) |
|
4.2.1 Karhunen--Loeve Decomposition |
|
|
74 | (2) |
|
4.2.2 Dealing with a Sample |
|
|
76 | (2) |
|
4.3 Functional Kriging in a Nutshell |
|
|
78 | (4) |
|
4.3.1 Solution Based on Basis Functions |
|
|
79 | (2) |
|
4.3.2 Estimation of Spatial Covariances |
|
|
81 | (1) |
|
4.4 An Example with the Precipitation Observations |
|
|
82 | (3) |
|
4.4.1 Fitting Variogram Model |
|
|
83 | (1) |
|
|
83 | (2) |
|
4.5 Functional Principal Component Kriging |
|
|
85 | (3) |
|
4.6 Multivariate Kriging with Functional Data |
|
|
88 | (10) |
|
|
91 | (2) |
|
|
93 | (1) |
|
4.6.3 Multivariate Functional Principal Component Kriging |
|
|
94 | (2) |
|
4.6.4 Mixing Temperature and Precipitation Curves |
|
|
96 | (2) |
|
|
98 | (6) |
|
|
100 | (1) |
|
4.A.1 Computation of the Kriging Variance |
|
|
100 | (2) |
|
|
102 | (2) |
|
5 Geostatistical Analysis in Bayes Spaces: Probability Densities and Compositional Data |
|
|
104 | (24) |
|
|
|
|
5.1 Introduction and Motivations |
|
|
104 | (1) |
|
5.2 Bayes Hilbert Spaces: Natural Spaces for Functional Compositions |
|
|
105 | (3) |
|
5.3 A Motivating Case Study: Particle-Size Data in Heterogeneous Aquifers - Data Description |
|
|
108 | (2) |
|
5.4 Kriging Stationary Functional Compositions |
|
|
110 | (9) |
|
|
110 | (2) |
|
|
112 | (1) |
|
5.4.3 An Example of Application |
|
|
113 | (3) |
|
5.4.4 Uncertainty Assessment |
|
|
116 | (3) |
|
5.5 Analyzing Nonstationary Fields of FCs |
|
|
119 | (4) |
|
5.6 Conclusions and Perspectives |
|
|
123 | (5) |
|
|
124 | (4) |
|
6 Spatial Functional Data Analysis for Probability Density Functions: Compositional Functional Data vs. Distributional Data Approach |
|
|
128 | (27) |
|
|
|
|
6.1 FDA and SDA When Data Are Densities |
|
|
130 | (8) |
|
6.1.1 Features of Density Functions as Compositional Functional Data |
|
|
131 | (4) |
|
6.1.2 Features of Density Functions as Distributional Data |
|
|
135 | (3) |
|
6.2 Measures of Spatial Association for Georeferenced Density Functions |
|
|
138 | (3) |
|
6.2.1 Identification of Spatial Clusters by Spatial Association Measures for Density Functions |
|
|
139 | (2) |
|
|
141 | (8) |
|
6.3.1 The SDA Distributional Approach |
|
|
143 | (2) |
|
6.3.2 The Compositional-Functional Approach |
|
|
145 | (2) |
|
|
147 | (2) |
|
|
149 | (6) |
|
|
151 | (1) |
|
|
151 | (4) |
|
Part II Statistical Techniques for Spatially Correlated Functional Data |
|
|
155 | (196) |
|
7 Clustering Spatial Functional Data |
|
|
157 | (18) |
|
|
|
|
|
157 | (1) |
|
7.2 Model-Based Clustering for Spatial Functional Data |
|
|
158 | (4) |
|
7.2.1 The Expectation--Maximization (EM) Algorithm |
|
|
160 | (1) |
|
|
161 | (1) |
|
|
161 | (1) |
|
|
161 | (1) |
|
7.3 Descendant Hierarchical Classification (HC) Based on Centrality Methods |
|
|
162 | (3) |
|
|
164 | (1) |
|
|
165 | (6) |
|
7.4.1 Model-Based Clustering |
|
|
167 | (2) |
|
7.4.2 Hierarchical Classification |
|
|
169 | (2) |
|
|
171 | (4) |
|
|
172 | (3) |
|
8 Nonparametric Statistical Analysis of Spatially Distributed Functional Data |
|
|
175 | (36) |
|
|
|
|
|
|
175 | (3) |
|
8.2 Large Sample Properties |
|
|
178 | (3) |
|
8.2.1 Uniform Almost Complete Convergence |
|
|
180 | (1) |
|
|
181 | (3) |
|
|
184 | (9) |
|
8.4.1 Bandwidth Selection Procedure |
|
|
184 | (1) |
|
|
185 | (8) |
|
|
193 | (18) |
|
|
194 | (1) |
|
8.A.1 Some Preliminary Results for the Proofs |
|
|
194 | (2) |
|
|
196 | (1) |
|
8.A.2.1 Proof of Theorem 8.1 |
|
|
196 | (1) |
|
8.A.2.2 Proof of Lemma A.3 |
|
|
196 | (1) |
|
8.A.2.3 Proof of Lemma A.4 |
|
|
196 | (5) |
|
8.A.2.4 Proof of Lemma A.5 |
|
|
201 | (1) |
|
8A.2.5 Proof of Lemma A.6 |
|
|
201 | (1) |
|
8A.2.6 Proof of Theorem 8.2 |
|
|
202 | (5) |
|
|
207 | (4) |
|
9 A Nonparametric Algorithm for Spatially Dependent Functional Data: Bagging Voronoi for Clustering, Dimensional Reduction, and Regression |
|
|
211 | (31) |
|
|
|
|
|
|
211 | (1) |
|
9.2 The Motivating Application |
|
|
212 | (4) |
|
|
214 | (2) |
|
9.3 The Bagging Voronoi Strategy |
|
|
216 | (2) |
|
9.4 Bagging Voronoi Clustering (BVClu) |
|
|
218 | (5) |
|
9.4.1 BVClu of the Telecom Data |
|
|
221 | (1) |
|
9.4.1.1 Setting the BVClu Parameters |
|
|
221 | (2) |
|
|
223 | (1) |
|
9.5 Bagging Voronoi Dimensional Reduction (BVDim) |
|
|
223 | (8) |
|
9.5.1 BVDim of the Telecom Data |
|
|
225 | (1) |
|
9.5.1.1 Setting the BVDim Parameters |
|
|
225 | (2) |
|
|
227 | (4) |
|
9.6 Bagging Voronoi Regression (BVReg) |
|
|
231 | (5) |
|
9.6.1 Covariate Information: The DUSAF Data |
|
|
232 | (2) |
|
9.6.2 BVReg of the Telecom Data |
|
|
234 | (1) |
|
9.6.2.1 Setting the BVReg Parameters |
|
|
234 | (1) |
|
|
235 | (1) |
|
9.7 Conclusions and Discussion |
|
|
236 | (6) |
|
|
239 | (3) |
|
10 Nonparametric Inference for Spatiotemporal Data Based on Local Null Hypothesis Testing for Functional Data |
|
|
242 | (18) |
|
|
|
|
242 | (2) |
|
|
244 | (6) |
|
10.2.1 Comparing Means of Two Functional Populations |
|
|
244 | (4) |
|
|
248 | (1) |
|
|
249 | (1) |
|
|
250 | (6) |
|
10.4 Conclusion and Future Works |
|
|
256 | (4) |
|
|
258 | (2) |
|
11 Modeling Spatially Dependent Functional Data by Spatial Regression with Differential Regularization |
|
|
260 | (26) |
|
|
|
|
260 | (4) |
|
11.2 Spatial Regression with Differential Regularization for Geostatistical Functional Data |
|
|
264 | (10) |
|
11.2.1 A Separable Spatiotemporal Basis System |
|
|
265 | (3) |
|
11.2.2 Discretization of the Penalized Sum-of-Square Error Functional |
|
|
268 | (3) |
|
11.2.3 Properties of the Estimators |
|
|
271 | (2) |
|
11.2.4 Model Without Covariates |
|
|
273 | (1) |
|
11.2.5 An Alternative Formulation of the Model |
|
|
274 | (1) |
|
|
274 | (4) |
|
11.4 An Illustrative Example: Study of the Waste Production in Venice Province |
|
|
278 | (4) |
|
11.4.1 The Venice Waste Dataset |
|
|
278 | (1) |
|
11.4.2 Analysis of Venice Waste Data by Spatial Regression with Differential Regularization |
|
|
279 | (3) |
|
|
282 | (4) |
|
|
283 | (3) |
|
12 Quasi-maximum Likelihood Estimators for Functional Linear Spatial Autoregressive Models |
|
|
286 | (43) |
|
|
|
|
|
|
286 | (2) |
|
|
288 | (5) |
|
12.2.1 Truncated Conditional Likelihood Method |
|
|
291 | (2) |
|
12.3 Results and Assumptions |
|
|
293 | (5) |
|
12.4 Numerical Experiments |
|
|
298 | (14) |
|
12.4.1 Monte Carlo Simulations |
|
|
298 | (7) |
|
12.4.2 Real Data Application |
|
|
305 | (7) |
|
|
312 | (17) |
|
|
313 | (1) |
|
Proof of Proposition 12.A.1 |
|
|
313 | (1) |
|
|
314 | (3) |
|
|
317 | (2) |
|
|
319 | (3) |
|
|
322 | (1) |
|
|
322 | (1) |
|
|
323 | (2) |
|
|
325 | (4) |
|
13 Spatial Prediction and Optimal Sampling for Multivariate Functional Random Fields |
|
|
329 | (22) |
|
|
|
|
|
329 | (3) |
|
13.1.1 Multivariate Spatial Functional Random Fields |
|
|
329 | (1) |
|
13.1.2 Functional Principal Components |
|
|
330 | (1) |
|
13.1.3 The Spatial Random Field of Scores |
|
|
331 | (1) |
|
|
332 | (4) |
|
13.2.1 Ordinary Functional Kriging (OFK) |
|
|
332 | (1) |
|
13.2.2 Functional Kriging Using Scalar Simple Kriging of the Scores (FKSK) |
|
|
333 | (1) |
|
13.2.3 Functional Kriging Using Scalar Simple Cokriging of the Scores (FKCK) |
|
|
333 | (3) |
|
13.3 Functional Cokriging |
|
|
336 | (4) |
|
13.3.1 Cokriging with Two Functional Random Fields |
|
|
336 | (2) |
|
13.3.2 Cokriging with P Functional Random Fields |
|
|
338 | (2) |
|
13.4 Optimal Sampling Designs for Spatial Prediction of Functional Data |
|
|
340 | (4) |
|
13.4.1 Optimal Spatial Sampling for OFK |
|
|
341 | (1) |
|
13.4.2 Optimal Spatial Sampling for FKSK |
|
|
341 | (1) |
|
13.4.3 Optimal Spatial Sampling for FKCK |
|
|
342 | (1) |
|
13.4.4 Optimal Spatial Sampling for Functional Cokriging |
|
|
343 | (1) |
|
|
344 | (4) |
|
13.6 Discussion and Conclusions |
|
|
348 | (3) |
|
|
348 | (3) |
|
Part III Spatio-Temporal Functional Data |
|
|
351 | (73) |
|
14 Spatio-temporal Functional Data Analysis |
|
|
353 | (22) |
|
|
|
|
|
|
353 | (2) |
|
|
355 | (4) |
|
|
359 | (3) |
|
|
362 | (3) |
|
|
365 | (4) |
|
14.6 Spatio-Temporal Extremes |
|
|
369 | (6) |
|
|
373 | (2) |
|
15 A Comparison of Spatiotemporal and Functional Kriging Approaches |
|
|
375 | (28) |
|
|
|
|
|
375 | (1) |
|
|
376 | (2) |
|
|
378 | (7) |
|
15.3.1 Functional Kriging |
|
|
378 | (1) |
|
15.3.1.1 Ordinary Kriging for Functional Data |
|
|
378 | (2) |
|
15.3.1.2 Pointwise Functional Kriging |
|
|
380 | (1) |
|
15.3.1.3 Functional Kriging Total Model |
|
|
381 | (1) |
|
15.3.2 Spatiotemporal Kriging |
|
|
382 | (2) |
|
15.3.3 Evaluation of Kriging Methods |
|
|
384 | (1) |
|
|
385 | (9) |
|
|
385 | (5) |
|
|
390 | (1) |
|
|
391 | (3) |
|
15.5 Application: Spatial Prediction of Temperature Curves in the Maritime Provinces of Canada |
|
|
394 | (6) |
|
|
400 | (3) |
|
|
400 | (3) |
|
16 From Spatiotemporal Smoothing to Functional Spatial Regression: a Penalized Approach |
|
|
403 | (21) |
|
|
|
Maria del Carmen Aguilera Morillo |
|
|
|
|
403 | (1) |
|
16.2 Smoothing Spatial Data via Penalized Regression |
|
|
404 | (3) |
|
16.3 Penalized Smooth Mixed Models |
|
|
407 | (2) |
|
16.4 P-spline Smooth ANOVA Models for Spatial and Spatiotemporal data |
|
|
409 | (4) |
|
|
411 | (2) |
|
16.5 P-spline Functional Spatial Regression |
|
|
413 | (2) |
|
16.6 Application to Air Pollution Data |
|
|
415 | (9) |
|
16.6.1 Spatiotemporal Smoothing |
|
|
416 | (1) |
|
16.6.2 Spatial Functional Regression |
|
|
416 | (5) |
|
|
421 | (1) |
|
|
421 | (3) |
Index |
|
424 | |