Preface to the Fourth Edition |
|
xxv | |
Acknowledgments |
|
xxix | |
About the Authors |
|
xxx | |
Acronyms |
|
xxxi | |
About the Companion Website |
|
xxxix | |
1 Introduction |
|
1 | (20) |
|
|
1 | (2) |
|
1.1.1 Navigation-Related Technologies |
|
|
1 | (1) |
|
|
2 | (1) |
|
|
3 | (7) |
|
|
4 | (2) |
|
|
4 | (1) |
|
1.2.1.2 Legacy GPS Signals |
|
|
4 | (2) |
|
1.2.1.3 Modernization of GPS |
|
|
6 | (1) |
|
1.2.2 Global Orbiting Navigation Satellite System (GLONASS) |
|
|
6 | (1) |
|
|
6 | (1) |
|
|
6 | (1) |
|
1.2.2.3 Modernized GLONASS |
|
|
7 | (1) |
|
|
7 | (2) |
|
1.2.3.1 Galileo Navigation Services |
|
|
7 | (1) |
|
1.2.3.2 Galileo Signal Characteristics |
|
|
8 | (1) |
|
|
9 | (1) |
|
1.2.4.1 BeiDou Satellites |
|
|
10 | (1) |
|
|
10 | (1) |
|
1.2.5 Regional Satellite Systems |
|
|
10 | (1) |
|
|
10 | (1) |
|
|
10 | (1) |
|
1.3 Inertial Navigation Overview |
|
|
10 | (6) |
|
|
11 | (1) |
|
1.3.1.1 Theoretical Foundations |
|
|
11 | (1) |
|
1.3.1.2 Development Challenges: Then and Now |
|
|
12 | (1) |
|
1.3.2 Development Results |
|
|
12 | (4) |
|
|
12 | (2) |
|
1.3.2.2 Sensor Attitude Control |
|
|
14 | (1) |
|
|
15 | (1) |
|
1.3.2.4 Integrating Acceleration and Velocity |
|
|
15 | (1) |
|
1.3.2.5 Accounting for Gravity |
|
|
15 | (1) |
|
1.4 GNSS/INS Integration Overview |
|
|
16 | (1) |
|
1.4.1 The Role of Kalman Filtering |
|
|
16 | (1) |
|
|
17 | (1) |
|
|
17 | (1) |
|
|
18 | (3) |
2 Fundamentals of Satellite Navigation Systems |
|
21 | (22) |
|
|
21 | (1) |
|
2.2 Satellite Navigation Systems Considerations |
|
|
21 | (1) |
|
2.2.1 Systems Other than GNSS |
|
|
21 | (1) |
|
2.2.2 Comparison Criteria |
|
|
22 | (1) |
|
|
22 | (11) |
|
|
23 | (2) |
|
2.3.2 Navigation Solution (Two-Dimensional Example) |
|
|
25 | (3) |
|
2.3.2.1 Symmetric Solution Using Two Transmitters on Land |
|
|
25 | (2) |
|
2.3.2.2 Navigation Solution Procedure |
|
|
27 | (1) |
|
2.3.3 User Solution and Dilution of Precision (DOP) |
|
|
28 | (4) |
|
2.3.4 Example Calculation of DOPs |
|
|
32 | (1) |
|
|
32 | (1) |
|
|
33 | (2) |
|
2.4.1 Coordinated Universal Time (UTC) Generation |
|
|
33 | (1) |
|
|
33 | (1) |
|
2.4.3 Receiver Computation of UTC |
|
|
34 | (1) |
|
2.5 Example: User Position Calculations with No Errors |
|
|
35 | (4) |
|
2.5.1 User Position Calculations |
|
|
35 | (2) |
|
2.5.1.1 Position Calculations |
|
|
35 | (2) |
|
2.5.2 User Velocity Calculations |
|
|
37 | (2) |
|
|
39 | (2) |
|
|
41 | (2) |
3 Fundamentals of Inertial Navigation |
|
43 | (50) |
|
|
43 | (1) |
|
|
44 | (6) |
|
3.3 Inertial Sensor Technologies |
|
|
50 | (10) |
|
|
50 | (3) |
|
3.3.1.1 Momentum Wheel Gyroscopes (MWGs) |
|
|
50 | (1) |
|
3.3.1.2 Coriolis Vibratory Gyroscopes (CVGs) |
|
|
51 | (2) |
|
3.3.1.3 Optical Gyroscopes (RLGs and FOGS) |
|
|
53 | (1) |
|
|
53 | (2) |
|
3.3.2.1 Mass-spring Designs |
|
|
53 | (1) |
|
3.3.2.2 Pendulous Integrating Gyroscopic Accelerometers (PIGA) |
|
|
54 | (1) |
|
|
54 | (1) |
|
|
55 | (1) |
|
|
55 | (2) |
|
3.3.3.1 Additive Output Noise |
|
|
55 | (1) |
|
3.3.3.2 Input-output Errors |
|
|
55 | (1) |
|
3.3.3.3 Error Compensation |
|
|
56 | (1) |
|
3.3.4 Inertial Sensor Assembly (ISA) Calibration |
|
|
57 | (3) |
|
3.3.4.1 ISA Calibration Parameters |
|
|
58 | (1) |
|
3.3.4.2 Calibration Parameter Drift |
|
|
59 | (1) |
|
3.3.5 Carouseling and Indexing |
|
|
60 | (1) |
|
3.4 Inertial Navigation Models |
|
|
60 | (10) |
|
|
61 | (1) |
|
3.4.2 Terrestrial Navigation Coordinates |
|
|
61 | (2) |
|
3.4.3 Earth Rotation Model |
|
|
63 | (1) |
|
|
63 | (5) |
|
3.4.4.1 Gravitational Potential |
|
|
63 | (1) |
|
3.4.4.2 Gravitational Acceleration |
|
|
64 | (1) |
|
3.4.4.3 Equipotential Surfaces |
|
|
64 | (1) |
|
3.4.4.4 Longitude and Latitude Rates |
|
|
64 | (4) |
|
|
68 | (2) |
|
3.4.5.1 Coordinate Transformation Matrices and Rotation Vectors |
|
|
69 | (1) |
|
3.4.5.2 Attitude Dynamics |
|
|
69 | (1) |
|
3.5 Initializing The Navigation Solution |
|
|
70 | (3) |
|
3.5.1 Initialization from an Earth-fixed Stationary State |
|
|
70 | (3) |
|
3.5.1.1 Accelerometer Recalibration |
|
|
70 | (1) |
|
3.5.1.2 Initializing Position and Velocity |
|
|
70 | (1) |
|
3.5.1.3 Initializing ISA Attitude |
|
|
70 | (1) |
|
3.5.1.4 Gyrocompass Alignment Accuracy |
|
|
71 | (2) |
|
3.5.2 Initialization on the Move |
|
|
73 | (1) |
|
3.5.2.1 Transfer Alignment |
|
|
73 | (1) |
|
3.5.2.2 Initializing Using GNSS |
|
|
73 | (1) |
|
3.6 Propagating The Navigation Solution |
|
|
73 | (13) |
|
3.6.1 Attitude Propagation |
|
|
73 | (9) |
|
3.6.1.1 Strapdown Attitude Propagation |
|
|
73 | (5) |
|
3.6.1.2 Quaternion Implementation |
|
|
78 | (1) |
|
3.6.1.3 Direction Cosines Implementation |
|
|
79 | (1) |
|
3.6.1.4 MATLAB® Implementations |
|
|
80 | (1) |
|
3.6.1.5 Gimbal Attitude Implementations |
|
|
80 | (2) |
|
3.6.2 Position and Velocity Propagation |
|
|
82 | (4) |
|
3.6.2.1 Vertical Channel Instability |
|
|
82 | (1) |
|
3.6.2.2 Strapdown Navigation Propagation |
|
|
82 | (2) |
|
3.6.2.3 Gimbaled Navigation Propagation |
|
|
84 | (2) |
|
3.7 Testing and Evaluation |
|
|
86 | (3) |
|
|
86 | (1) |
|
|
86 | (1) |
|
3.7.3 Performance Qualification Testing |
|
|
87 | (2) |
|
3.7.3.1 CEP and Nautical Miles |
|
|
87 | (1) |
|
3.7.3.2 Free Inertial Performance |
|
|
87 | (2) |
|
|
89 | (1) |
|
|
89 | (1) |
|
|
90 | (2) |
|
|
92 | (1) |
4 GNSS Signal Structure, Characteristics, and Information Utilization |
|
93 | (52) |
|
4.1 Legacy GPS Signal Components, Purposes, and Properties |
|
|
93 | (25) |
|
4.1.1 Signal Models for the Legacy GPS Signals |
|
|
94 | (4) |
|
4.1.2 Navigation Data Format |
|
|
98 | (4) |
|
|
99 | (2) |
|
4.1.2.2 GPS Week Number (WN) |
|
|
101 | (1) |
|
4.1.2.3 Information by Subframe |
|
|
101 | (1) |
|
4.1.3 GPS Satellite Position Calculations |
|
|
102 | (6) |
|
4.1.3.1 Ephemeris Data Reference Time Step and Transit Time Correction |
|
|
103 | (2) |
|
4.1.3.2 True, Eccentric, and Mean Anomaly |
|
|
105 | (1) |
|
4.1.3.3 Kepler's Equation for the Eccentric Anomaly |
|
|
106 | (1) |
|
4.1.3.4 Satellite Time Corrections |
|
|
107 | (1) |
|
4.1.4 C/A-Code and Its Properties |
|
|
108 | (7) |
|
4.1.4.1 Temporal Structure |
|
|
109 | (1) |
|
4.1.4.2 Autocorrelation Function |
|
|
110 | (1) |
|
|
111 | (1) |
|
4.1.4.4 Despreading of the Signal Spectrum |
|
|
111 | (2) |
|
4.1.4.5 Role of Despreading in Interference Suppression |
|
|
113 | (1) |
|
4.1.4.6 Cross-correlation Function |
|
|
114 | (1) |
|
4.1.5 P(Y)-Code and Its Properties |
|
|
115 | (1) |
|
4.1.5.1 P-Code Characteristics |
|
|
115 | (1) |
|
|
116 | (1) |
|
|
116 | (1) |
|
4.1.6.1 Dual-Frequency Operation |
|
|
116 | (1) |
|
4.1.7 Transmitted Power Levels |
|
|
117 | (1) |
|
4.1.8 Free Space and Other Loss Factors |
|
|
117 | (1) |
|
4.1.9 Received Signal Power |
|
|
118 | (1) |
|
|
118 | (11) |
|
4.2.1 Benefits from GPS Modernization |
|
|
119 | (1) |
|
4.2.2 Elements of the Modernized GPS |
|
|
120 | (2) |
|
4.2.3 L2 Civil Signal (L2C) |
|
|
122 | (1) |
|
|
123 | (2) |
|
|
125 | (1) |
|
|
126 | (2) |
|
4.2.7 GPS Satellite Blocks |
|
|
128 | (1) |
|
4.2.8 GPS Ground Control Segment |
|
|
129 | (1) |
|
4.3 GLONASS Signal Structure and Characteristics |
|
|
129 | (3) |
|
4.3.1 Frequency Division Multiple Access (FDMA) Signals |
|
|
130 | (1) |
|
4.3.1.1 Carrier Components |
|
|
130 | (1) |
|
4.3.1.2 Spreading Codes and Modulation |
|
|
130 | (1) |
|
4.3.1.3 Navigation Data Format |
|
|
131 | (1) |
|
4.3.1.4 Satellite Families |
|
|
131 | (1) |
|
|
131 | (1) |
|
|
132 | (2) |
|
4.4.1 Constellation and Levels of Services |
|
|
132 | (1) |
|
4.4.2 Navigation Data and Signals |
|
|
132 | (2) |
|
|
134 | (1) |
|
|
135 | (3) |
|
|
138 | (1) |
|
|
138 | (3) |
|
|
141 | (4) |
5 GNSS Antenna Design and Analysis |
|
145 | (44) |
|
|
145 | (1) |
|
5.2 GNSS Antenna Performance Characteristics |
|
|
145 | (12) |
|
|
145 | (1) |
|
5.2.2 Frequency and Bandwidth Coverage |
|
|
146 | (1) |
|
5.2.3 Radiation Pattern Characteristics |
|
|
147 | (2) |
|
5.2.4 Antenna Polarization and Axial Ratio |
|
|
149 | (3) |
|
5.2.5 Directivity, Efficiency, and Gain of a GNSS Antenna |
|
|
152 | (1) |
|
5.2.6 Antenna Impedance, Standing Wave Ratio, and Return Loss |
|
|
153 | (1) |
|
|
154 | (1) |
|
5.2.8 Antenna Noise Figure |
|
|
155 | (2) |
|
5.3 Computational Electromagnetic Models (CEMs) for GNSS Antenna Design |
|
|
157 | (2) |
|
5.4 GNSS Antenna Technologies |
|
|
159 | (14) |
|
5.4.1 Dipole-Based GNSS Antennas |
|
|
159 | (1) |
|
5.4.2 GNSS Patch Antennas |
|
|
160 | (9) |
|
5.4.2.1 Edge-Fed, LP, Single-Frequency GNSS Patch Antenna |
|
|
161 | (2) |
|
5.4.2.2 Probe-Fed, LP, Single-Frequency GNSS Patch Antenna |
|
|
163 | (2) |
|
5.4.2.3 Dual Probe-Fed, RHCP, Single-Frequency GNSS Patch Antenna |
|
|
165 | (1) |
|
5.4.2.4 Single Probe-Fed, RHCP, Single-Frequency GNSS Patch Antenna |
|
|
165 | (3) |
|
5.4.2.5 Dual Probe-Fed, RHCP, Multifrequency GNSS Patch Antenna |
|
|
168 | (1) |
|
5.4.3 Survey-Grade/Reference GNSS Antennas |
|
|
169 | (4) |
|
5.4.3.1 Choke Ring-Based GNSS Antennas |
|
|
169 | (2) |
|
5.4.3.2 Advanced Planner-Based GNSS Antennas |
|
|
171 | (2) |
|
5.5 Principles of Adaptable Phased-Array Antennas |
|
|
173 | (8) |
|
5.5.1 Digital Beamforming Adaptive Antenna Array Formulations |
|
|
176 | (3) |
|
|
179 | (1) |
|
|
179 | (1) |
|
5.5.4 Configurations of Adaptable Phased-Array Antennas |
|
|
179 | (1) |
|
5.5.5 Relative Merits of Adaptable Phased-Array Antennas |
|
|
180 | (1) |
|
5.6 Application Calibration/Compensation Considerations |
|
|
181 | (2) |
|
|
183 | (1) |
|
|
184 | (5) |
6 GNSS Receiver Design and Analysis |
|
189 | (60) |
|
6.1 Receiver Design Choices |
|
|
189 | (6) |
|
6.1.1 Global Navigation Satellite System (GNSS) Application to Be Supported |
|
|
189 | (1) |
|
6.1.2 Single or Multifrequency Support |
|
|
189 | (2) |
|
6.1.2.1 Dual-Frequency Ionosphere Correction |
|
|
190 | (1) |
|
6.1.2.2 Improved Carrier Phase Ambiguity Resolution in High-Accuracy Differential Positioning |
|
|
190 | (1) |
|
|
191 | (1) |
|
|
191 | (1) |
|
6.1.5 Differential Capability |
|
|
192 | (2) |
|
6.1.5.1 Corrections Formats |
|
|
193 | (1) |
|
|
194 | (1) |
|
6.2 Receiver Architecture |
|
|
195 | (5) |
|
6.2.1 Radio Frequency (RF) Front End |
|
|
195 | (2) |
|
6.2.2 Frequency Down-Conversion and IF Amplification |
|
|
197 | (2) |
|
|
198 | (1) |
|
6.2.3 Analog-to-Digital Conversion and Automatic Gain Control |
|
|
199 | (1) |
|
6.2.4 Baseband Signal Processing |
|
|
200 | (1) |
|
6.3 Signal Acquisition and Tracking |
|
|
200 | (20) |
|
6.3.1 Hypothesize About the User Location |
|
|
201 | (1) |
|
6.3.2 Hypothesize About Which GNSS Satellites Are Visible |
|
|
201 | (1) |
|
6.3.3 Signal Doppler Estimation |
|
|
202 | (1) |
|
6.3.4 Search for Signal in Frequency and Code Phase |
|
|
202 | (5) |
|
6.3.4.1 Sequential Searching in Code Delay |
|
|
205 | (1) |
|
6.3.4.2 Sequential Searching in Frequency |
|
|
205 | (1) |
|
6.3.4.3 Frequency Search Strategy |
|
|
206 | (1) |
|
6.3.4.4 Parallel and Hybrid Search Methods |
|
|
206 | (1) |
|
6.3.5 Signal Detection and Confirmation |
|
|
207 | (3) |
|
6.3.5.1 Detection Confirmation |
|
|
207 | (2) |
|
6.3.5.2 Coordination of Frequency Tuning and Code Chipping Rate |
|
|
209 | (1) |
|
|
210 | (5) |
|
6.3.6.1 Code Loop Bandwidth Considerations |
|
|
214 | (1) |
|
6.3.6.2 Coherent Versus Noncoherent Code Tracking |
|
|
214 | (1) |
|
6.3.7 Carrier Phase Tracking Loops |
|
|
215 | (4) |
|
6.3.7.1 PLL Capture Range |
|
|
217 | (1) |
|
|
218 | (1) |
|
6.3.7.3 Use of Frequency-Lock Loops (FLLs) for Carrier Capture |
|
|
218 | (1) |
|
6.3.8 Bit Synchronization |
|
|
219 | (1) |
|
6.3.9 Data Bit Demodulation |
|
|
219 | (1) |
|
6.4 Extraction of Information for User Solution |
|
|
220 | (8) |
|
6.4.1 Signal Transmission Time Information |
|
|
220 | (1) |
|
6.4.2 Ephemeris Data for Satellite Position and Velocity |
|
|
221 | (1) |
|
6.4.3 Pseudorange Measurements Formulation Using Code Phase |
|
|
221 | (2) |
|
6.4.3.1 Pseudorange Positioning Equations |
|
|
222 | (1) |
|
6.4.4 Measurements Using Carrier Phase |
|
|
223 | (2) |
|
6.4.5 Carrier Doppler Measurement |
|
|
225 | (1) |
|
6.4.6 Integrated Doppler Measurements |
|
|
226 | (2) |
|
6.5 Theoretical Considerations in Pseudorange, Carrier Phase, and Frequency Estimations |
|
|
228 | (4) |
|
6.5.1 Theoretical Error Bounds for Code Phase Measurement |
|
|
229 | (1) |
|
6.5.2 Theoretical Error Bounds for Carrier Phase Measurements |
|
|
230 | (1) |
|
6.5.3 Theoretical Error Bounds for Frequency Measurement |
|
|
231 | (1) |
|
6.6 High-Sensitivity A-GPS Systems |
|
|
232 | (7) |
|
6.6.1 How Assisting Data Improves Receiver Performance |
|
|
233 | (4) |
|
6.6.1.1 Reduction of Frequency Uncertainty |
|
|
233 | (1) |
|
6.6.1.2 Determination of Accurate Time |
|
|
234 | (1) |
|
6.6.1.3 Transmission of Satellite Ephemeris Data |
|
|
235 | (1) |
|
6.6.1.4 Provision of Approximate Client Location |
|
|
236 | (1) |
|
6.6.1.5 Transmission of the Demodulated Navigation Bit Stream |
|
|
236 | (1) |
|
6.6.1.6 Server-Provided Location |
|
|
237 | (1) |
|
6.6.2 Factors Affecting High-Sensitivity Receivers |
|
|
237 | (12) |
|
6.6.2.1 Antenna and Low-Noise RF Design |
|
|
238 | (1) |
|
6.6.2.2 Degradation due to Signal Phase Variations |
|
|
238 | (1) |
|
6.6.2.3 Signal Processing Losses |
|
|
238 | (1) |
|
|
239 | (1) |
|
6.6.2.5 Susceptibility to Interference and Strong Signals |
|
|
239 | (1) |
|
6.6.2.6 The Problem of Time Synchronization |
|
|
239 | (1) |
|
6.6.2.7 Difficulties in Reliable Sensitivity Assessment |
|
|
239 | (1) |
|
6.7 Software-Defined Radio (SDR) Approach |
|
|
239 | (1) |
|
6.8 Pseudolite Considerations |
|
|
240 | (2) |
|
|
242 | (2) |
|
|
244 | (5) |
7 GNSS Measurement Errors |
|
249 | (44) |
|
7.1 Source of GNSS Measurement Errors |
|
|
249 | (1) |
|
7.2 Ionospheric Propagation Errors |
|
|
249 | (13) |
|
7.2.1 Ionospheric Delay Model |
|
|
251 | (2) |
|
7.2.2 GNSS SEAS Ionospheric Algorithms |
|
|
253 | (10) |
|
7.2.2.1 L1L2 Receiver and Satellite Bias and Ionospheric Delay Estimations for GPS |
|
|
255 | (2) |
|
|
257 | (2) |
|
7.2.2.3 Selection of Q and R |
|
|
259 | (2) |
|
7.2.2.4 Calculation of Ionospheric Delay Using Pseudoranges |
|
|
261 | (1) |
|
7.3 Tropospheric Propagation Errors |
|
|
262 | (1) |
|
7.4 The Multipath Problem |
|
|
263 | (3) |
|
7.4.1 How Multipath Causes Ranging Errors |
|
|
264 | (2) |
|
7.5 Methods of Multipath Mitigation |
|
|
266 | (17) |
|
7.5.1 Spatial Processing Techniques |
|
|
266 | (3) |
|
7.5.1.1 Antenna Location Strategy |
|
|
266 | (1) |
|
7.5.1.2 Ground Plane Antennas |
|
|
266 | (1) |
|
7.5.1.3 Directive Antenna Arrays |
|
|
267 | (1) |
|
7.5.1.4 Long-Term Signal Observation |
|
|
267 | (2) |
|
7.5.2 Time-Domain Processing |
|
|
269 | (2) |
|
7.5.2.1 Narrow-Correlator Technology (1990-1993) |
|
|
269 | (1) |
|
7.5.2.2 Leading-Edge Techniques |
|
|
270 | (1) |
|
7.5.2.3 Correlation Function Shape-Based Methods |
|
|
271 | (1) |
|
7.5.2.4 Modified Correlator Reference Waveforms |
|
|
271 | (1) |
|
7.5.3 Multipath Mitigation Technology (MMT) |
|
|
271 | (10) |
|
|
271 | (1) |
|
7.5.3.2 Maximum-Likelihood (ML) Multipath Estimation |
|
|
272 | (1) |
|
7.5.3.3 The Two-Path ML Estimator (MLE) |
|
|
272 | (1) |
|
7.5.3.4 Asymptotic Properties of ML Estimators |
|
|
273 | (1) |
|
7.5.3.5 The MMT Multipath Mitigation Algorithm |
|
|
274 | (1) |
|
7.5.3.6 The MMT Baseband Signal Model |
|
|
274 | (1) |
|
7.5.3.7 Baseband Signal Vectors |
|
|
274 | (1) |
|
7.5.3.8 The Log-Likelihood Function |
|
|
275 | (2) |
|
7.5.3.9 Secondary-Path Amplitude Constraint |
|
|
277 | (1) |
|
7.5.3.10 Signal Compression |
|
|
277 | (2) |
|
7.5.3.11 Properties of the Compressed Signal |
|
|
279 | (1) |
|
7.5.3.12 The Compression Theorem |
|
|
280 | (1) |
|
7.5.4 Performance of Time-Domain Methods |
|
|
281 | (2) |
|
7.5.4.1 Ranging with the C/A-Code |
|
|
281 | (1) |
|
7.5.4.2 Carrier Phase Ranging |
|
|
282 | (1) |
|
7.5.4.3 Testing Receiver Multipath Performance |
|
|
282 | (1) |
|
7.6 Theoretical Limits for Multipath Mitigation |
|
|
283 | (2) |
|
7.6.1 Estimation-Theoretic Methods |
|
|
283 | (1) |
|
7.6.1.1 Optimality Criteria |
|
|
284 | (1) |
|
7.6.2 Minimum Mean-Squared Error (MMSE) Estimator |
|
|
284 | (1) |
|
7.6.3 Multipath Modeling Errors |
|
|
284 | (1) |
|
7.7 Ephemeris Data Errors |
|
|
285 | (1) |
|
|
285 | (1) |
|
7.9 Receiver Clock Errors |
|
|
286 | (1) |
|
|
287 | (2) |
|
|
289 | (2) |
|
|
291 | (2) |
8 Differential GNSS |
|
293 | (38) |
|
|
293 | (1) |
|
8.2 Descriptions of Local-Area Differential GNSS (LADGNSS), Wide-Area Differential GNSS (WADGNSS), and Space-Based Augmentation System (SBAS) |
|
|
294 | (5) |
|
|
294 | (1) |
|
|
294 | (1) |
|
|
294 | (5) |
|
8.2.3.1 Wide-Area Augmentation System (WAAS) |
|
|
294 | (4) |
|
8.2.3.2 European Global Navigation Overlay System (EGNOS) |
|
|
298 | (1) |
|
|
298 | (1) |
|
8.3 GEO with L1L5 Signals |
|
|
299 | (8) |
|
8.3.1 GEO Uplink Subsystem (GUS) Control Loop Overview |
|
|
302 | (5) |
|
8.3.1.1 Ionospheric Kalman Filters |
|
|
302 | (2) |
|
8.3.1.2 Range Kalman Filter |
|
|
304 | (1) |
|
8.3.1.3 Code Control Function |
|
|
304 | (1) |
|
8.3.1.4 Frequency Control Function |
|
|
305 | (1) |
|
8.3.1.5 L1L5 Bias Estimation Function |
|
|
305 | (1) |
|
8.3.1.6 Code-Carrier Coherence |
|
|
306 | (1) |
|
8.3.1.7 Carrier Frequency Stability |
|
|
307 | (1) |
|
8.4 GUS Clock Steering Algorithm |
|
|
307 | (5) |
|
8.4.1 Receiver Clock Error Determination |
|
|
309 | (2) |
|
8.4.2 Clock Steering Control Law |
|
|
311 | (1) |
|
8.5 GEO Orbit Determination (OD) |
|
|
312 | (6) |
|
8.5.1 OD Covariance Analysis |
|
|
313 | (5) |
|
8.6 Ground-Based Augmentation System (GBAS) |
|
|
318 | (2) |
|
8.6.1 Local-Area Augmentation System (LAAS) |
|
|
318 | (1) |
|
8.6.2 Joint Precision Approach and Landing System (ALS) |
|
|
318 | (1) |
|
8.6.3 Enhanced Long-Range Navigation (eLORAN) |
|
|
319 | (1) |
|
8.7 Measurement/Relative-Based DGNSS |
|
|
320 | (5) |
|
8.7.1 Code Differential Measurements |
|
|
320 | (2) |
|
8.7.1.1 Single-Difference Observations |
|
|
321 | (1) |
|
8.7.1.2 Double-Difference Observations |
|
|
321 | (1) |
|
8.7.2 Carrier Phase Differential Measurements |
|
|
322 | (2) |
|
8.7.2.1 Single-Difference Observations |
|
|
322 | (1) |
|
8.7.2.2 Double-Difference Observations |
|
|
323 | (1) |
|
8.7.2.3 Triple-Difference Observations |
|
|
323 | (1) |
|
8.7.2.4 Combinations of Code and Carrier Phase Observations |
|
|
324 | (1) |
|
8.7.3 Positioning Using Double-Difference Measurements |
|
|
324 | (1) |
|
8.7.3.1 Code-Based Positioning |
|
|
324 | (1) |
|
8.7.3.2 Carrier Phase-Based Positioning |
|
|
325 | (1) |
|
8.7.3.3 Real-Time Processing Versus Postprocessing |
|
|
325 | (1) |
|
8.8 GNSS Precise Point Positioning Services and Products |
|
|
325 | (3) |
|
8.8.1 The International GNSS Service (IGS) |
|
|
325 | (1) |
|
8.8.2 Continuously Operating Reference Stations (CORSs) |
|
|
326 | (1) |
|
8.8.3 GPS Inferred Positioning System (GIPSY) and Orbit Analysis Simulation Software (OASIS) |
|
|
326 | (1) |
|
8.8.4 Scripps Coordinate Update Tool (SCOUT) |
|
|
327 | (1) |
|
8.8.5 The Online Positioning User Service (OPUS) |
|
|
327 | (1) |
|
8.8.6 Australia's Online GPS Processing System (AUPOS) |
|
|
328 | (1) |
|
8.8.7 National Resources Canada (NRCan) |
|
|
328 | (1) |
|
|
328 | (1) |
|
|
328 | (3) |
9 GNSS and GEO Signal integrity |
|
331 | (24) |
|
|
331 | (3) |
|
9.1.1 Range Comparison Method |
|
|
332 | (1) |
|
9.1.2 Least-Squares Method |
|
|
332 | (2) |
|
|
334 | (1) |
|
9.2 SBAS and GBAS Integrity Design |
|
|
334 | (15) |
|
9.2.1 SBAS Error Sources and Integrity Threats |
|
|
336 | (1) |
|
9.2.2 GNSS-Associated Errors |
|
|
337 | (2) |
|
|
337 | (1) |
|
9.2.2.2 GNSS Ephemeris Error |
|
|
338 | (1) |
|
9.2.2.3 GNSS Code and Carrier Incoherence |
|
|
338 | (1) |
|
9.2.2.4 GNSS Signal Distortion |
|
|
338 | (1) |
|
|
338 | (1) |
|
9.2.2.6 Environment Errors: Ionosphere |
|
|
339 | (1) |
|
9.2.2.7 Environment Errors: Troposphere |
|
|
339 | (1) |
|
9.2.3 GEO-Associated Errors |
|
|
339 | (1) |
|
9.2.3.1 GEO Code and Carrier Incoherence |
|
|
339 | (1) |
|
9.2.3.2 GEO-Associated Environment Errors: Ionosphere |
|
|
340 | (1) |
|
9.2.3.3 GEO-Associated Environment Errors: Troposphere |
|
|
340 | (1) |
|
9.2.4 Receiver and Measurement Processing Errors |
|
|
340 | (1) |
|
9.2.4.1 Receiver Measurement Error |
|
|
340 | (1) |
|
|
340 | (1) |
|
|
341 | (1) |
|
|
341 | (1) |
|
9.2.4.5 Receiver Clock Error |
|
|
341 | (1) |
|
9.2.4.6 Measurement Processing Unpack/Pack Corruption |
|
|
341 | (1) |
|
|
341 | (1) |
|
9.2.5.1 Reference Time Offset Estimation Error |
|
|
341 | (1) |
|
9.2.5.2 Clock Estimation Error |
|
|
342 | (1) |
|
9.2.5.3 Ephemeris Correction Error |
|
|
342 | (1) |
|
9.2.5.4 L1L2 Wide-Area Reference Equipment (WRE) and GPS Satellite Bias Estimation Error |
|
|
342 | (1) |
|
9.2.6 Integrity-Bound Associated Errors |
|
|
342 | (1) |
|
9.2.6.1 Ionospheric Modeling Errors |
|
|
343 | (1) |
|
9.2.6.2 Fringe Area Ephemeris Error |
|
|
343 | (1) |
|
9.2.6.3 Small-Sigma Errors |
|
|
343 | (1) |
|
9.2.6.4 Missed Message: Old but Active Data (OBAD) |
|
|
343 | (1) |
|
9.2.6.5 Time to Alarm (TTA) Exceeded |
|
|
343 | (1) |
|
|
343 | (1) |
|
9.2.7.1 GEO Uplink System Fails to Receive SBAS Message |
|
|
343 | (1) |
|
9.2.8 Mitigation of Integrity Threats |
|
|
344 | (16) |
|
9.2.8.1 Mitigation of GNSS Associated Errors |
|
|
344 | (2) |
|
9.2.8.2 Mitigation of GEO-Associated Errors |
|
|
346 | (1) |
|
9.2.8.3 Mitigation of Receiver and Measurement Processing Errors |
|
|
347 | (1) |
|
9.2.8.4 Mitigation of Estimation Errors |
|
|
348 | (1) |
|
9.2.8.5 Mitigation of Integrity-Bound-Associated Errors |
|
|
348 | (1) |
|
|
349 | (2) |
|
|
351 | (1) |
|
|
351 | (1) |
|
|
352 | (1) |
|
|
352 | (3) |
10 Kalman Filtering |
|
355 | (64) |
|
|
355 | (1) |
|
10.2 Frequently Asked Questions |
|
|
356 | (4) |
|
|
360 | (6) |
|
10.3.1 Real Vectors and Matrices |
|
|
360 | (3) |
|
|
360 | (1) |
|
10.3.1.2 Vector and Matrix Properties |
|
|
361 | (2) |
|
10.3.2 Probability Essentials |
|
|
363 | (2) |
|
|
363 | (1) |
|
10.3.2.2 Linearity of the Expectancy Operator E(·) |
|
|
364 | (1) |
|
10.3.2.3 Means and Covariances of Linearly Transformed Variates |
|
|
365 | (1) |
|
10.3.3 Discrete Time Notation |
|
|
365 | (1) |
|
|
365 | (1) |
|
10.3.3.2 A Priori and A Posteriori Values |
|
|
365 | (1) |
|
10.3.3.3 Allowing for Testing and Rejecting Measurements |
|
|
365 | (1) |
|
10.4 Kalman Filter Genesis |
|
|
366 | (14) |
|
10.4.1 Measurement Update (Corrector) |
|
|
366 | (7) |
|
10.4.1.1 Linear Least Mean Squares Estimation: Gauss to Kalman |
|
|
367 | (6) |
|
10.4.1.2 Kalman Measurement Update Equations |
|
|
373 | (1) |
|
10.4.2 Time Update (Predictor) |
|
|
373 | (5) |
|
10.4.2.1 Continuous-Time Dynamics |
|
|
373 | (4) |
|
10.4.2.2 Discrete-Time Dynamics |
|
|
377 | (1) |
|
10.4.3 Basic Kalman Filter Equations |
|
|
378 | (1) |
|
10.4.4 The Time-Invariant Case |
|
|
378 | (1) |
|
10.4.5 Observability and Stability Issues |
|
|
378 | (2) |
|
10.5 Alternative Implementations |
|
|
380 | (8) |
|
10.5.1 Implementation Issues |
|
|
380 | (1) |
|
10.5.2 Conventional Implementation Improvements |
|
|
381 | (2) |
|
10.5.2.1 Measurement Decorrelation by Diagonalization |
|
|
381 | (1) |
|
10.5.2.2 Exploiting Symmetry |
|
|
382 | (1) |
|
10.5.2.3 Information Filter |
|
|
382 | (1) |
|
10.5.2.4 Sigma Rho Filtering |
|
|
383 | (1) |
|
10.5.3 James E. Potter (1937-2005) and Square Root Filtering |
|
|
383 | (1) |
|
10.5.4 Square Root Matrix Manipulation Methods |
|
|
384 | (2) |
|
10.5.4.1 Cholesky Decomposition |
|
|
384 | (1) |
|
10.5.4.2 Modified Cholesky Decomposition |
|
|
385 | (1) |
|
10.5.4.3 Nonuniqueness of Matrix Square Roots |
|
|
386 | (1) |
|
10.5.4.4 Triangularization by QR Decomposition |
|
|
386 | (1) |
|
10.5.4.5 Householder Triangularization |
|
|
386 | (1) |
|
10.5.5 Alternative Square Root Filter Implementations |
|
|
386 | (2) |
|
10.5.5.1 Potter Implementation |
|
|
386 | (1) |
|
10.5.5.2 Carlson "Fast Triangular" Square Root Filter |
|
|
387 | (1) |
|
10.5.5.3 Bierman-Thornton UD Filter |
|
|
387 | (1) |
|
10.5.5.4 Unscented Square Root Filter |
|
|
388 | (1) |
|
10.5.5.5 Square Root Information Filter (SRIF) |
|
|
388 | (1) |
|
10.6 Nonlinear Approximations |
|
|
388 | (9) |
|
10.6.1 Linear Approximation Errors |
|
|
389 | (3) |
|
10.6.2 Adaptive Kalman Filtering |
|
|
392 | (1) |
|
10.6.3 Taylor-Maclauren Series Approximations |
|
|
392 | (1) |
|
10.6.3.1 First-Order: Extended Kalman Filter |
|
|
393 | (1) |
|
10.6.3.2 Second-Order: Bass-Norum-Schwartz Filter |
|
|
393 | (1) |
|
10.6.4 Trajectory Perturbation Modeling |
|
|
393 | (1) |
|
10.6.5 Structured Sampling Methods |
|
|
394 | (3) |
|
10.6.5.1 Sigma-Point Filters |
|
|
395 | (1) |
|
10.6.5.2 Particle Filters |
|
|
396 | (1) |
|
10.6.5.3 The Unscented Kalman Filter |
|
|
396 | (1) |
|
10.7 Diagnostics and Monitoring |
|
|
397 | (4) |
|
10.7.1 Covariance Matrix Diagnostics |
|
|
397 | (1) |
|
10.7.1.1 Symmetry Control |
|
|
398 | (1) |
|
|
398 | (1) |
|
|
398 | (1) |
|
10.7.2 Innovations Monitoring |
|
|
398 | (3) |
|
10.7.2.1 Kalman Filter Innovations |
|
|
398 | (1) |
|
10.7.2.2 Information-Weighted Innovations Monitoring |
|
|
399 | (2) |
|
10.8 GNSS-Only Navigation |
|
|
401 | (9) |
|
10.8.1 GNSS Dynamic Models |
|
|
402 | (4) |
|
10.8.1.1 Receiver Clock Bias Dynamics |
|
|
402 | (1) |
|
10.8.1.2 Discrete Time Models |
|
|
403 | (1) |
|
10.8.1.3 Exponentially Correlated Random Processes |
|
|
403 | (1) |
|
10.8.1.4 Host Vehicle Dynamics for Standalone GNSS Navigation |
|
|
403 | (1) |
|
10.8.1.5 Point Mass Dynamic Models |
|
|
404 | (2) |
|
10.8.2 GNSS Measurement Models |
|
|
406 | (14) |
|
10.8.2.1 Measurement Event Timing |
|
|
406 | (1) |
|
|
407 | (1) |
|
10.8.2.3 Time and Distance Correlation |
|
|
407 | (1) |
|
10.8.2.4 Measurement Sensitivity Matrix |
|
|
408 | (1) |
|
|
408 | (2) |
|
|
410 | (2) |
|
|
412 | (2) |
|
|
414 | (5) |
11 Inertial Navigation Error Analysis |
|
419 | (42) |
|
|
419 | (1) |
|
11.2 Errors in the Navigation Solution |
|
|
420 | (10) |
|
11.2.1 Navigation Error Variables |
|
|
421 | (1) |
|
11.2.2 Coordinates Used for INS Error Analysis |
|
|
421 | (1) |
|
11.2.3 Model Variables and Parameters |
|
|
421 | (6) |
|
11.2.3.1 INS Orientation Variables and Errors |
|
|
421 | (6) |
|
11.2.4 Dynamic Coupling Mechanisms |
|
|
427 | (3) |
|
11.3 Navigation Error Dynamics |
|
|
430 | (17) |
|
11.3.1 Error Dynamics Due to Velocity Integration |
|
|
431 | (1) |
|
11.3.2 Error Dynamics Due to Gravity Miscalculations |
|
|
432 | (1) |
|
11.3.2.1 INS Gravity Modeling |
|
|
432 | (1) |
|
11.3.2.2 Navigation Error Model for Gravity Calculations |
|
|
432 | (1) |
|
11.3.3 Error Dynamics Due to Coriolis Acceleration |
|
|
433 | (1) |
|
11.3.4 Error Dynamics Due to Centrifugal Acceleration |
|
|
434 | (1) |
|
11.3.5 Error Dynamics Due to Earthrate Leveling |
|
|
435 | (1) |
|
11.3.6 Error Dynamics Due to Velocity Leveling |
|
|
436 | (1) |
|
11.3.7 Error Dynamics Due to Acceleration and IMU Alignment Errors |
|
|
437 | (1) |
|
11.3.8 Composite Model from All Effects |
|
|
438 | (1) |
|
11.3.9 Vertical Navigation Instability |
|
|
439 | (5) |
|
11.3.9.1 Altimeter Aiding |
|
|
442 | (2) |
|
11.3.9.2 Using GNSS for Vertical Channel Stabilization |
|
|
444 | (1) |
|
11.3.10 Schuler Oscillations |
|
|
444 | (1) |
|
11.3.10.1 Schuler Oscillations with Coriolis Coupling |
|
|
445 | (1) |
|
11.3.11 Core Model Validation and Tuning |
|
|
445 | (2) |
|
11.3.11.1 Horizontal Inertial Navigation Model |
|
|
446 | (1) |
|
11.4 Inertial Sensor Noise Propagation |
|
|
447 | (3) |
|
|
447 | (1) |
|
|
447 | (2) |
|
11.4.3 Horizontal CEP Rate Versus Sensor Noise |
|
|
449 | (1) |
|
11.5 Sensor Compensation Errors |
|
|
450 | (6) |
|
11.5.1 Sensor Compensation Error Models |
|
|
450 | (6) |
|
11.5.1.1 Exponentially Correlated Parameter Drift Models |
|
|
452 | (1) |
|
11.5.1.2 Dynamic Coupling into Navigation Errors |
|
|
453 | (1) |
|
11.5.1.3 Augmented Dynamic Coefficient Matrix |
|
|
454 | (2) |
|
11.5.2 Carouseling and Indexing |
|
|
456 | (1) |
|
|
456 | (2) |
|
|
457 | (1) |
|
|
458 | (1) |
|
|
459 | (2) |
12 GNSS/INS Integration |
|
461 | (28) |
|
|
461 | (1) |
|
12.2 New Application Opportunities |
|
|
462 | (6) |
|
12.2.1 Integration Advantages |
|
|
462 | (1) |
|
12.2.1.1 Exploiting Complementary Error Characteristics |
|
|
462 | (1) |
|
12.2.1.2 Cancelling Vulnerabilities |
|
|
463 | (1) |
|
12.2.2 Enabling New Capabilities |
|
|
463 | (1) |
|
12.2.2.1 Real-Time Inertial Sensor Error Compensation |
|
|
463 | (1) |
|
12.2.2.2 INS Initialization on the Move |
|
|
463 | (1) |
|
12.2.2.3 Antenna Switching |
|
|
464 | (1) |
|
12.2.2.4 Antenna-INS Offsets |
|
|
464 | (1) |
|
|
464 | (4) |
|
12.2.3.1 Economies of Scale |
|
|
464 | (1) |
|
12.2.3.2 Implementation Tradeoffs |
|
|
465 | (3) |
|
12.3 Integrated Navigation Models |
|
|
468 | (8) |
|
12.3.1 Common Navigation Models |
|
|
468 | (2) |
|
|
470 | (3) |
|
12.3.2.1 GNSS Time Synchronization |
|
|
470 | (1) |
|
12.3.2.2 Receiver Clock Error Model |
|
|
470 | (2) |
|
12.3.2.3 Propagation Delay |
|
|
472 | (1) |
|
12.3.2.4 Pseudorange Measurement Noise |
|
|
473 | (1) |
|
|
473 | (1) |
|
12.3.3.1 Navigation Error Model |
|
|
473 | (1) |
|
12.3.3.2 Sensor Compensation Errors |
|
|
473 | (1) |
|
12.3.4 GNSS/INS Error Model |
|
|
474 | (2) |
|
|
474 | (1) |
|
12.3.4.2 Numbers of State Variables |
|
|
474 | (1) |
|
12.3.4.3 Dynamic Coefficient Matrix |
|
|
475 | (1) |
|
12.3.4.4 Process Noise Covariance |
|
|
475 | (1) |
|
12.3.4.5 Measurement Sensitivities |
|
|
476 | (1) |
|
12.4 Performance Analysis |
|
|
476 | (9) |
|
12.4.1 The Influence of Trajectories |
|
|
476 | (1) |
|
12.4.2 Performance Metrics |
|
|
477 | (2) |
|
12.4.2.1 Application-Dependent Performance Metrics |
|
|
477 | (1) |
|
12.4.2.2 General-Purpose Metrics |
|
|
478 | (1) |
|
12.4.2.3 Mean Squared Error Metrics |
|
|
478 | (1) |
|
12.4.2.4 Probabilistic Metrics |
|
|
479 | (1) |
|
12.4.3 Dynamic Simulation Model |
|
|
479 | (1) |
|
12.4.3.1 State Transition Matrices |
|
|
479 | (1) |
|
12.4.3.2 Dynamic Simulation |
|
|
480 | (1) |
|
|
480 | (17) |
|
12.4.4.1 Stand-Alone GNSS Performance |
|
|
480 | (2) |
|
12.4.4.2 INS-Only Performance |
|
|
482 | (2) |
|
12.4.4.3 Integrated GNSS/INS Performance |
|
|
484 | (1) |
|
|
485 | (1) |
|
|
486 | (1) |
|
|
487 | (2) |
Appendix A Software |
|
489 | (8) |
|
|
489 | (1) |
|
A.2 Software for Chapter 2 |
|
|
490 | (1) |
|
A.3 Software for Chapter 3 |
|
|
490 | (1) |
|
A.4 Software for Chapter 4 |
|
|
490 | (1) |
|
A.5 Software for Chapter 7 |
|
|
491 | (1) |
|
A.6 Software for Chapter 10 |
|
|
491 | (1) |
|
A.7 Software for Chapter 11 |
|
|
492 | (1) |
|
A.8 Software for Chapter 12 |
|
|
493 | (1) |
|
A.9 Software for Appendix B |
|
|
494 | (1) |
|
A.10 Software for Appendix C |
|
|
494 | (1) |
|
A.11 GPS Almanac/Ephemeris Data Sources |
|
|
495 | (2) |
Appendix B Coordinate Systems and Transformations |
|
497 | (54) |
|
B.1 Coordinate Transformation Matrices |
|
|
497 | (3) |
|
|
497 | (1) |
|
|
498 | (1) |
|
B.1.3 Unit Coordinate Vectors |
|
|
498 | (1) |
|
|
499 | (1) |
|
B.1.5 Composition of Coordinate Transformations |
|
|
500 | (1) |
|
B.2 Inertial Reference Directions |
|
|
500 | (1) |
|
B.2.1 Earth's Polar Axis and the Equatorial Plane |
|
|
500 | (1) |
|
B.2.2 The Ecliptic and the Vernal Equinox |
|
|
500 | (1) |
|
B.2.3 Earth-Centered Inertial (ECI) Coordinates |
|
|
501 | (1) |
|
B.3 Application-dependent Coordinate Systems |
|
|
501 | (19) |
|
B.3.1 Cartesian and Polar Coordinates |
|
|
501 | (1) |
|
B.3.2 Celestial Coordinates |
|
|
502 | (1) |
|
B.3.3 Satellite Orbit Coordinates |
|
|
503 | (1) |
|
B.3.4 Earth-Centered Inertial (ECI) Coordinates |
|
|
504 | (1) |
|
B.3.5 Earth-Centered, Earth-Fixed (ECEF) Coordinates |
|
|
505 | (7) |
|
B.3.5.1 Longitude in ECEF Coordinates |
|
|
505 | (1) |
|
B.3.5.2 Latitudes in ECEF Coordinates |
|
|
505 | (1) |
|
B.3.5.3 Latitude on an Ellipsoidal Earth |
|
|
506 | (1) |
|
B.3.5.4 Parametric Latitude |
|
|
506 | (1) |
|
B.3.5.5 Geodetic Latitude |
|
|
507 | (3) |
|
B.3.5.6 WGS84 Reference Geoid Parameters |
|
|
510 | (1) |
|
B.3.5.7 Geocentric Latitude |
|
|
510 | (2) |
|
B.3.5.8 Geocentric Radius |
|
|
512 | (1) |
|
B.3.6 Ellipsoidal Radius of Curvature |
|
|
512 | (1) |
|
B.3.7 Local Tangent Plane (LTP) Coordinates |
|
|
513 | (3) |
|
B.3.7.1 Alpha Wander Coordinates |
|
|
513 | (1) |
|
B.3.7.2 ENU/NED Coordinates |
|
|
514 | (1) |
|
B.3.7.3 ENU/ECEF Coordinates |
|
|
514 | (1) |
|
B.3.7.4 NED/ECEF Coordinates |
|
|
515 | (1) |
|
B.3.8 Roll-Pitch-Yaw (RPY) Coordinates |
|
|
516 | (1) |
|
B.3.9 Vehicle Attitude Euler Angles |
|
|
516 | (2) |
|
B.3.9.1 RPY/ENU Coordinates |
|
|
517 | (1) |
|
|
518 | (2) |
|
B.4 Coordinate Transformation Models |
|
|
520 | (27) |
|
|
521 | (1) |
|
|
522 | (16) |
|
B.4.2.1 Rotation Vector to Matrix |
|
|
523 | (1) |
|
B.4.2.2 Matrix to Rotation Vector |
|
|
524 | (2) |
|
B.4.2.3 Special Cases for sin(0) almost = to 0 |
|
|
526 | (1) |
|
B.4.2.4 MATLAB® Implementations |
|
|
527 | (1) |
|
B.4.2.5 Time Derivatives of Rotation Vectors |
|
|
527 | (6) |
|
B.4.2.6 Time Derivatives of Matrix Expressions |
|
|
533 | (3) |
|
B.4.2.7 Partial Derivatives with Respect to Rotation Vectors |
|
|
536 | (2) |
|
B.4.3 Direction Cosines Matrix |
|
|
538 | (4) |
|
B.4.3.1 Rotating Coordinates |
|
|
538 | (4) |
|
|
542 | (5) |
|
B.4.4.1 Quaternion Matrices |
|
|
542 | (1) |
|
B.4.4.2 Addition and Multiplication |
|
|
543 | (1) |
|
|
544 | (1) |
|
B.4.4.4 Representing Rotations |
|
|
545 | (2) |
|
B.5 Newtonian Mechanics in Rotating Coordinates |
|
|
547 | (4) |
|
B.5.1 Rotating Coordinates |
|
|
547 | (1) |
|
B.5.2 Time Derivatives of Matrix Products |
|
|
548 | (1) |
|
B.5.3 Solving for Centrifugal and Coriolis Accelerations |
|
|
548 | (3) |
Appendix C PDF Ambiguity Errors in Nonlinear Kalman Filtering |
|
551 | (14) |
|
|
551 | (1) |
|
|
552 | (6) |
|
C.2.1 Computing Expected Values |
|
|
552 | (1) |
|
C.2.2 Representative Sample of PDFs |
|
|
553 | (3) |
|
C.2.3 Parametric Class of Nonlinear Transformations Used |
|
|
556 | (2) |
|
C.2.4 Ambiguity Errors in Nonlinearly Transformed Means and Variances |
|
|
558 | (1) |
|
|
558 | (5) |
|
C.3.1 Nonlinearly Transformed Means |
|
|
558 | (1) |
|
C.3.2 Nonlinearly Transformed Variances |
|
|
559 | (4) |
|
C.4 Mitigating Application-specific Ambiguity Errors |
|
|
563 | (1) |
|
|
564 | (1) |
Index |
|
565 | |