Muutke küpsiste eelistusi

Global Navigation Satellite Systems, Inertial Navigation, and Integration 4th edition [Kõva köide]

(College of Engineering and Computer Science, California State University at Fullerton), , (Rockwell Science Center, Thousand Oaks, California)
  • Formaat: Hardback, 608 pages, kõrgus x laius x paksus: 230x156x32 mm, kaal: 1089 g
  • Ilmumisaeg: 12-Feb-2020
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 1119547830
  • ISBN-13: 9781119547839
  • Formaat: Hardback, 608 pages, kõrgus x laius x paksus: 230x156x32 mm, kaal: 1089 g
  • Ilmumisaeg: 12-Feb-2020
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 1119547830
  • ISBN-13: 9781119547839

Covers significant changes in GPS/INS technology, and includes new material on GPS, GNSSs including GPS, Glonass, Galileo, BeiDou, QZSS, and IRNSS/NAViC, and MATLAB programs on square root information filtering (SRIF) 

This book provides readers with solutions to real-world problems associated with global navigation satellite systems, inertial navigation, and integration. It presents readers with numerous detailed examples and practice problems, including GNSS-aided INS, modeling of gyros and accelerometers, and SBAS and GBAS. This revised fourth edition adds new material on GPS III and RAIM. It also provides updated information on low cost sensors such as MEMS, as well as GLONASS, Galileo, BeiDou, QZSS, and IRNSS/NAViC, and QZSS. Revisions also include added material on the more numerically stable square-root information filter (SRIF) with MATLAB programs and examples from GNSS system state filters such as ensemble time filter with square-root covariance filter (SRCF) of Bierman and Thornton and SigmaRho filter.

Global Navigation Satellite Systems, Inertial Navigation, and Integration, 4th Edition provides:

  • Updates on the significant upgrades in existing GNSS systems, and on other systems currently under advanced development
  • Expanded coverage of basic principles of antenna design, and practical antenna design solutions
  • More information on basic principles of receiver design, and an update of the foundations for code and carrier acquisition and tracking within a GNSS receiver
  • Examples demonstrating independence of Kalman filtering from probability density functions of error sources beyond their means and covariances
  • New coverage of inertial navigation to cover recent technology developments and the mathematical models and methods used in its implementation
  • Wider coverage of GNSS/INS integration, including derivation of a unified GNSS/INS integration model, its MATLAB implementations, and performance evaluation under simulated dynamic conditions

Global Navigation Satellite Systems, Inertial Navigation, and Integration, Fourth Edition is intended for people who need a working knowledge of Global Navigation Satellite Systems (GNSS), Inertial Navigation Systems (INS), and the Kalman filtering models and methods used in their integration.

Preface to the Fourth Edition xxv
Acknowledgments xxix
About the Authors xxx
Acronyms xxxi
About the Companion Website xxxix
1 Introduction 1(20)
1.1 Navigation
1(2)
1.1.1 Navigation-Related Technologies
1(1)
1.1.2 Navigation Modes
2(1)
1.2 GNSS Overview
3(7)
1.2.1 GPS
4(2)
1.2.1.1 GPS Orbits
4(1)
1.2.1.2 Legacy GPS Signals
4(2)
1.2.1.3 Modernization of GPS
6(1)
1.2.2 Global Orbiting Navigation Satellite System (GLONASS)
6(1)
1.2.2.1 GLONASS Orbits
6(1)
1.2.2.2 GLONASS Signals
6(1)
1.2.2.3 Modernized GLONASS
7(1)
1.2.3 Galileo
7(2)
1.2.3.1 Galileo Navigation Services
7(1)
1.2.3.2 Galileo Signal Characteristics
8(1)
1.2.4 BeiDou
9(1)
1.2.4.1 BeiDou Satellites
10(1)
1.2.4.2 Frequency
10(1)
1.2.5 Regional Satellite Systems
10(1)
1.2.5.1 QZSS
10(1)
1.2.5.2 NAVIC
10(1)
1.3 Inertial Navigation Overview
10(6)
1.3.1 History
11(1)
1.3.1.1 Theoretical Foundations
11(1)
1.3.1.2 Development Challenges: Then and Now
12(1)
1.3.2 Development Results
12(4)
1.3.2.1 Inertial Sensors
12(2)
1.3.2.2 Sensor Attitude Control
14(1)
1.3.2.3 Initialization
15(1)
1.3.2.4 Integrating Acceleration and Velocity
15(1)
1.3.2.5 Accounting for Gravity
15(1)
1.4 GNSS/INS Integration Overview
16(1)
1.4.1 The Role of Kalman Filtering
16(1)
1.4.2 Implementation
17(1)
Problems
17(1)
References
18(3)
2 Fundamentals of Satellite Navigation Systems 21(22)
2.1
Chapter Focus
21(1)
2.2 Satellite Navigation Systems Considerations
21(1)
2.2.1 Systems Other than GNSS
21(1)
2.2.2 Comparison Criteria
22(1)
2.3 Satellite Navigation
22(11)
2.3.1 GNSS Orbits
23(2)
2.3.2 Navigation Solution (Two-Dimensional Example)
25(3)
2.3.2.1 Symmetric Solution Using Two Transmitters on Land
25(2)
2.3.2.2 Navigation Solution Procedure
27(1)
2.3.3 User Solution and Dilution of Precision (DOP)
28(4)
2.3.4 Example Calculation of DOPs
32(1)
2.3.4.1 Four Satellites
32(1)
2.4 Time and GPS
33(2)
2.4.1 Coordinated Universal Time (UTC) Generation
33(1)
2.4.2 GPS System Time
33(1)
2.4.3 Receiver Computation of UTC
34(1)
2.5 Example: User Position Calculations with No Errors
35(4)
2.5.1 User Position Calculations
35(2)
2.5.1.1 Position Calculations
35(2)
2.5.2 User Velocity Calculations
37(2)
Problems
39(2)
References
41(2)
3 Fundamentals of Inertial Navigation 43(50)
3.1
Chapter Focus
43(1)
3.2 Terminology
44(6)
3.3 Inertial Sensor Technologies
50(10)
3.3.1 Gyroscopes
50(3)
3.3.1.1 Momentum Wheel Gyroscopes (MWGs)
50(1)
3.3.1.2 Coriolis Vibratory Gyroscopes (CVGs)
51(2)
3.3.1.3 Optical Gyroscopes (RLGs and FOGS)
53(1)
3.3.2 Accelerometers
53(2)
3.3.2.1 Mass-spring Designs
53(1)
3.3.2.2 Pendulous Integrating Gyroscopic Accelerometers (PIGA)
54(1)
3.3.2.3 Electromagnetic
54(1)
3.3.2.4 Electrostatic
55(1)
3.3.3 Sensor Errors
55(2)
3.3.3.1 Additive Output Noise
55(1)
3.3.3.2 Input-output Errors
55(1)
3.3.3.3 Error Compensation
56(1)
3.3.4 Inertial Sensor Assembly (ISA) Calibration
57(3)
3.3.4.1 ISA Calibration Parameters
58(1)
3.3.4.2 Calibration Parameter Drift
59(1)
3.3.5 Carouseling and Indexing
60(1)
3.4 Inertial Navigation Models
60(10)
3.4.1 Geoid Models
61(1)
3.4.2 Terrestrial Navigation Coordinates
61(2)
3.4.3 Earth Rotation Model
63(1)
3.4.4 Gravity Models
63(5)
3.4.4.1 Gravitational Potential
63(1)
3.4.4.2 Gravitational Acceleration
64(1)
3.4.4.3 Equipotential Surfaces
64(1)
3.4.4.4 Longitude and Latitude Rates
64(4)
3.4.5 Attitude Models
68(2)
3.4.5.1 Coordinate Transformation Matrices and Rotation Vectors
69(1)
3.4.5.2 Attitude Dynamics
69(1)
3.5 Initializing The Navigation Solution
70(3)
3.5.1 Initialization from an Earth-fixed Stationary State
70(3)
3.5.1.1 Accelerometer Recalibration
70(1)
3.5.1.2 Initializing Position and Velocity
70(1)
3.5.1.3 Initializing ISA Attitude
70(1)
3.5.1.4 Gyrocompass Alignment Accuracy
71(2)
3.5.2 Initialization on the Move
73(1)
3.5.2.1 Transfer Alignment
73(1)
3.5.2.2 Initializing Using GNSS
73(1)
3.6 Propagating The Navigation Solution
73(13)
3.6.1 Attitude Propagation
73(9)
3.6.1.1 Strapdown Attitude Propagation
73(5)
3.6.1.2 Quaternion Implementation
78(1)
3.6.1.3 Direction Cosines Implementation
79(1)
3.6.1.4 MATLAB® Implementations
80(1)
3.6.1.5 Gimbal Attitude Implementations
80(2)
3.6.2 Position and Velocity Propagation
82(4)
3.6.2.1 Vertical Channel Instability
82(1)
3.6.2.2 Strapdown Navigation Propagation
82(2)
3.6.2.3 Gimbaled Navigation Propagation
84(2)
3.7 Testing and Evaluation
86(3)
3.7.1 Laboratory Testing
86(1)
3.7.2 Field Testing
86(1)
3.7.3 Performance Qualification Testing
87(2)
3.7.3.1 CEP and Nautical Miles
87(1)
3.7.3.2 Free Inertial Performance
87(2)
3.8 Summary
89(1)
3.8.1 Further Reading
89(1)
Problems
90(2)
References
92(1)
4 GNSS Signal Structure, Characteristics, and Information Utilization 93(52)
4.1 Legacy GPS Signal Components, Purposes, and Properties
93(25)
4.1.1 Signal Models for the Legacy GPS Signals
94(4)
4.1.2 Navigation Data Format
98(4)
4.1.2.1 Z-Count
99(2)
4.1.2.2 GPS Week Number (WN)
101(1)
4.1.2.3 Information by Subframe
101(1)
4.1.3 GPS Satellite Position Calculations
102(6)
4.1.3.1 Ephemeris Data Reference Time Step and Transit Time Correction
103(2)
4.1.3.2 True, Eccentric, and Mean Anomaly
105(1)
4.1.3.3 Kepler's Equation for the Eccentric Anomaly
106(1)
4.1.3.4 Satellite Time Corrections
107(1)
4.1.4 C/A-Code and Its Properties
108(7)
4.1.4.1 Temporal Structure
109(1)
4.1.4.2 Autocorrelation Function
110(1)
4.1.4.3 Power Spectrum
111(1)
4.1.4.4 Despreading of the Signal Spectrum
111(2)
4.1.4.5 Role of Despreading in Interference Suppression
113(1)
4.1.4.6 Cross-correlation Function
114(1)
4.1.5 P(Y)-Code and Its Properties
115(1)
4.1.5.1 P-Code Characteristics
115(1)
4.1.5.2 Y-Code
116(1)
4.1.6 L1 and L2 Carriers
116(1)
4.1.6.1 Dual-Frequency Operation
116(1)
4.1.7 Transmitted Power Levels
117(1)
4.1.8 Free Space and Other Loss Factors
117(1)
4.1.9 Received Signal Power
118(1)
4.2 Modernization of GPS
118(11)
4.2.1 Benefits from GPS Modernization
119(1)
4.2.2 Elements of the Modernized GPS
120(2)
4.2.3 L2 Civil Signal (L2C)
122(1)
4.2.4 L5 Signal
123(2)
4.2.5 M-Code
125(1)
4.2.6 L1C Signal
126(2)
4.2.7 GPS Satellite Blocks
128(1)
4.2.8 GPS Ground Control Segment
129(1)
4.3 GLONASS Signal Structure and Characteristics
129(3)
4.3.1 Frequency Division Multiple Access (FDMA) Signals
130(1)
4.3.1.1 Carrier Components
130(1)
4.3.1.2 Spreading Codes and Modulation
130(1)
4.3.1.3 Navigation Data Format
131(1)
4.3.1.4 Satellite Families
131(1)
4.3.2 CDMA Modernization
131(1)
4.4 Galileo
132(2)
4.4.1 Constellation and Levels of Services
132(1)
4.4.2 Navigation Data and Signals
132(2)
4.5 BeiDou
134(1)
4.6 QZSS
135(3)
4.7 IRNSS/NAVIC
138(1)
Problems
138(3)
References
141(4)
5 GNSS Antenna Design and Analysis 145(44)
5.1 Applications
145(1)
5.2 GNSS Antenna Performance Characteristics
145(12)
5.2.1 Size and Cost
145(1)
5.2.2 Frequency and Bandwidth Coverage
146(1)
5.2.3 Radiation Pattern Characteristics
147(2)
5.2.4 Antenna Polarization and Axial Ratio
149(3)
5.2.5 Directivity, Efficiency, and Gain of a GNSS Antenna
152(1)
5.2.6 Antenna Impedance, Standing Wave Ratio, and Return Loss
153(1)
5.2.7 Antenna Bandwidth
154(1)
5.2.8 Antenna Noise Figure
155(2)
5.3 Computational Electromagnetic Models (CEMs) for GNSS Antenna Design
157(2)
5.4 GNSS Antenna Technologies
159(14)
5.4.1 Dipole-Based GNSS Antennas
159(1)
5.4.2 GNSS Patch Antennas
160(9)
5.4.2.1 Edge-Fed, LP, Single-Frequency GNSS Patch Antenna
161(2)
5.4.2.2 Probe-Fed, LP, Single-Frequency GNSS Patch Antenna
163(2)
5.4.2.3 Dual Probe-Fed, RHCP, Single-Frequency GNSS Patch Antenna
165(1)
5.4.2.4 Single Probe-Fed, RHCP, Single-Frequency GNSS Patch Antenna
165(3)
5.4.2.5 Dual Probe-Fed, RHCP, Multifrequency GNSS Patch Antenna
168(1)
5.4.3 Survey-Grade/Reference GNSS Antennas
169(4)
5.4.3.1 Choke Ring-Based GNSS Antennas
169(2)
5.4.3.2 Advanced Planner-Based GNSS Antennas
171(2)
5.5 Principles of Adaptable Phased-Array Antennas
173(8)
5.5.1 Digital Beamforming Adaptive Antenna Array Formulations
176(3)
5.5.2 STAP
179(1)
5.5.3 SFAP
179(1)
5.5.4 Configurations of Adaptable Phased-Array Antennas
179(1)
5.5.5 Relative Merits of Adaptable Phased-Array Antennas
180(1)
5.6 Application Calibration/Compensation Considerations
181(2)
Problems
183(1)
References
184(5)
6 GNSS Receiver Design and Analysis 189(60)
6.1 Receiver Design Choices
189(6)
6.1.1 Global Navigation Satellite System (GNSS) Application to Be Supported
189(1)
6.1.2 Single or Multifrequency Support
189(2)
6.1.2.1 Dual-Frequency Ionosphere Correction
190(1)
6.1.2.2 Improved Carrier Phase Ambiguity Resolution in High-Accuracy Differential Positioning
190(1)
6.1.3 Number of Channels
191(1)
6.1.4 Code Selections
191(1)
6.1.5 Differential Capability
192(2)
6.1.5.1 Corrections Formats
193(1)
6.1.6 Aiding Inputs
194(1)
6.2 Receiver Architecture
195(5)
6.2.1 Radio Frequency (RF) Front End
195(2)
6.2.2 Frequency Down-Conversion and IF Amplification
197(2)
6.2.2.1 SNR
198(1)
6.2.3 Analog-to-Digital Conversion and Automatic Gain Control
199(1)
6.2.4 Baseband Signal Processing
200(1)
6.3 Signal Acquisition and Tracking
200(20)
6.3.1 Hypothesize About the User Location
201(1)
6.3.2 Hypothesize About Which GNSS Satellites Are Visible
201(1)
6.3.3 Signal Doppler Estimation
202(1)
6.3.4 Search for Signal in Frequency and Code Phase
202(5)
6.3.4.1 Sequential Searching in Code Delay
205(1)
6.3.4.2 Sequential Searching in Frequency
205(1)
6.3.4.3 Frequency Search Strategy
206(1)
6.3.4.4 Parallel and Hybrid Search Methods
206(1)
6.3.5 Signal Detection and Confirmation
207(3)
6.3.5.1 Detection Confirmation
207(2)
6.3.5.2 Coordination of Frequency Tuning and Code Chipping Rate
209(1)
6.3.6 Code Tracking Loop
210(5)
6.3.6.1 Code Loop Bandwidth Considerations
214(1)
6.3.6.2 Coherent Versus Noncoherent Code Tracking
214(1)
6.3.7 Carrier Phase Tracking Loops
215(4)
6.3.7.1 PLL Capture Range
217(1)
6.3.7.2 PLL Order
218(1)
6.3.7.3 Use of Frequency-Lock Loops (FLLs) for Carrier Capture
218(1)
6.3.8 Bit Synchronization
219(1)
6.3.9 Data Bit Demodulation
219(1)
6.4 Extraction of Information for User Solution
220(8)
6.4.1 Signal Transmission Time Information
220(1)
6.4.2 Ephemeris Data for Satellite Position and Velocity
221(1)
6.4.3 Pseudorange Measurements Formulation Using Code Phase
221(2)
6.4.3.1 Pseudorange Positioning Equations
222(1)
6.4.4 Measurements Using Carrier Phase
223(2)
6.4.5 Carrier Doppler Measurement
225(1)
6.4.6 Integrated Doppler Measurements
226(2)
6.5 Theoretical Considerations in Pseudorange, Carrier Phase, and Frequency Estimations
228(4)
6.5.1 Theoretical Error Bounds for Code Phase Measurement
229(1)
6.5.2 Theoretical Error Bounds for Carrier Phase Measurements
230(1)
6.5.3 Theoretical Error Bounds for Frequency Measurement
231(1)
6.6 High-Sensitivity A-GPS Systems
232(7)
6.6.1 How Assisting Data Improves Receiver Performance
233(4)
6.6.1.1 Reduction of Frequency Uncertainty
233(1)
6.6.1.2 Determination of Accurate Time
234(1)
6.6.1.3 Transmission of Satellite Ephemeris Data
235(1)
6.6.1.4 Provision of Approximate Client Location
236(1)
6.6.1.5 Transmission of the Demodulated Navigation Bit Stream
236(1)
6.6.1.6 Server-Provided Location
237(1)
6.6.2 Factors Affecting High-Sensitivity Receivers
237(12)
6.6.2.1 Antenna and Low-Noise RF Design
238(1)
6.6.2.2 Degradation due to Signal Phase Variations
238(1)
6.6.2.3 Signal Processing Losses
238(1)
6.6.2.4 Multipath Fading
239(1)
6.6.2.5 Susceptibility to Interference and Strong Signals
239(1)
6.6.2.6 The Problem of Time Synchronization
239(1)
6.6.2.7 Difficulties in Reliable Sensitivity Assessment
239(1)
6.7 Software-Defined Radio (SDR) Approach
239(1)
6.8 Pseudolite Considerations
240(2)
Problems
242(2)
References
244(5)
7 GNSS Measurement Errors 249(44)
7.1 Source of GNSS Measurement Errors
249(1)
7.2 Ionospheric Propagation Errors
249(13)
7.2.1 Ionospheric Delay Model
251(2)
7.2.2 GNSS SEAS Ionospheric Algorithms
253(10)
7.2.2.1 L1L2 Receiver and Satellite Bias and Ionospheric Delay Estimations for GPS
255(2)
7.2.2.2 Kalman Filter
257(2)
7.2.2.3 Selection of Q and R
259(2)
7.2.2.4 Calculation of Ionospheric Delay Using Pseudoranges
261(1)
7.3 Tropospheric Propagation Errors
262(1)
7.4 The Multipath Problem
263(3)
7.4.1 How Multipath Causes Ranging Errors
264(2)
7.5 Methods of Multipath Mitigation
266(17)
7.5.1 Spatial Processing Techniques
266(3)
7.5.1.1 Antenna Location Strategy
266(1)
7.5.1.2 Ground Plane Antennas
266(1)
7.5.1.3 Directive Antenna Arrays
267(1)
7.5.1.4 Long-Term Signal Observation
267(2)
7.5.2 Time-Domain Processing
269(2)
7.5.2.1 Narrow-Correlator Technology (1990-1993)
269(1)
7.5.2.2 Leading-Edge Techniques
270(1)
7.5.2.3 Correlation Function Shape-Based Methods
271(1)
7.5.2.4 Modified Correlator Reference Waveforms
271(1)
7.5.3 Multipath Mitigation Technology (MMT)
271(10)
7.5.3.1 Description
271(1)
7.5.3.2 Maximum-Likelihood (ML) Multipath Estimation
272(1)
7.5.3.3 The Two-Path ML Estimator (MLE)
272(1)
7.5.3.4 Asymptotic Properties of ML Estimators
273(1)
7.5.3.5 The MMT Multipath Mitigation Algorithm
274(1)
7.5.3.6 The MMT Baseband Signal Model
274(1)
7.5.3.7 Baseband Signal Vectors
274(1)
7.5.3.8 The Log-Likelihood Function
275(2)
7.5.3.9 Secondary-Path Amplitude Constraint
277(1)
7.5.3.10 Signal Compression
277(2)
7.5.3.11 Properties of the Compressed Signal
279(1)
7.5.3.12 The Compression Theorem
280(1)
7.5.4 Performance of Time-Domain Methods
281(2)
7.5.4.1 Ranging with the C/A-Code
281(1)
7.5.4.2 Carrier Phase Ranging
282(1)
7.5.4.3 Testing Receiver Multipath Performance
282(1)
7.6 Theoretical Limits for Multipath Mitigation
283(2)
7.6.1 Estimation-Theoretic Methods
283(1)
7.6.1.1 Optimality Criteria
284(1)
7.6.2 Minimum Mean-Squared Error (MMSE) Estimator
284(1)
7.6.3 Multipath Modeling Errors
284(1)
7.7 Ephemeris Data Errors
285(1)
7.8 Onboard Clock Errors
285(1)
7.9 Receiver Clock Errors
286(1)
7.10 Error Budgets
287(2)
Problems
289(2)
References
291(2)
8 Differential GNSS 293(38)
8.1 Introduction
293(1)
8.2 Descriptions of Local-Area Differential GNSS (LADGNSS), Wide-Area Differential GNSS (WADGNSS), and Space-Based Augmentation System (SBAS)
294(5)
8.2.1 LADGNSS
294(1)
8.2.2 WADGNSS
294(1)
8.2.3 SBAS
294(5)
8.2.3.1 Wide-Area Augmentation System (WAAS)
294(4)
8.2.3.2 European Global Navigation Overlay System (EGNOS)
298(1)
8.2.3.3 Other SBAS
298(1)
8.3 GEO with L1L5 Signals
299(8)
8.3.1 GEO Uplink Subsystem (GUS) Control Loop Overview
302(5)
8.3.1.1 Ionospheric Kalman Filters
302(2)
8.3.1.2 Range Kalman Filter
304(1)
8.3.1.3 Code Control Function
304(1)
8.3.1.4 Frequency Control Function
305(1)
8.3.1.5 L1L5 Bias Estimation Function
305(1)
8.3.1.6 Code-Carrier Coherence
306(1)
8.3.1.7 Carrier Frequency Stability
307(1)
8.4 GUS Clock Steering Algorithm
307(5)
8.4.1 Receiver Clock Error Determination
309(2)
8.4.2 Clock Steering Control Law
311(1)
8.5 GEO Orbit Determination (OD)
312(6)
8.5.1 OD Covariance Analysis
313(5)
8.6 Ground-Based Augmentation System (GBAS)
318(2)
8.6.1 Local-Area Augmentation System (LAAS)
318(1)
8.6.2 Joint Precision Approach and Landing System (ALS)
318(1)
8.6.3 Enhanced Long-Range Navigation (eLORAN)
319(1)
8.7 Measurement/Relative-Based DGNSS
320(5)
8.7.1 Code Differential Measurements
320(2)
8.7.1.1 Single-Difference Observations
321(1)
8.7.1.2 Double-Difference Observations
321(1)
8.7.2 Carrier Phase Differential Measurements
322(2)
8.7.2.1 Single-Difference Observations
322(1)
8.7.2.2 Double-Difference Observations
323(1)
8.7.2.3 Triple-Difference Observations
323(1)
8.7.2.4 Combinations of Code and Carrier Phase Observations
324(1)
8.7.3 Positioning Using Double-Difference Measurements
324(1)
8.7.3.1 Code-Based Positioning
324(1)
8.7.3.2 Carrier Phase-Based Positioning
325(1)
8.7.3.3 Real-Time Processing Versus Postprocessing
325(1)
8.8 GNSS Precise Point Positioning Services and Products
325(3)
8.8.1 The International GNSS Service (IGS)
325(1)
8.8.2 Continuously Operating Reference Stations (CORSs)
326(1)
8.8.3 GPS Inferred Positioning System (GIPSY) and Orbit Analysis Simulation Software (OASIS)
326(1)
8.8.4 Scripps Coordinate Update Tool (SCOUT)
327(1)
8.8.5 The Online Positioning User Service (OPUS)
327(1)
8.8.6 Australia's Online GPS Processing System (AUPOS)
328(1)
8.8.7 National Resources Canada (NRCan)
328(1)
Problems
328(1)
References
328(3)
9 GNSS and GEO Signal integrity 331(24)
9.1 Introduction
331(3)
9.1.1 Range Comparison Method
332(1)
9.1.2 Least-Squares Method
332(2)
9.1.3 Parity Method
334(1)
9.2 SBAS and GBAS Integrity Design
334(15)
9.2.1 SBAS Error Sources and Integrity Threats
336(1)
9.2.2 GNSS-Associated Errors
337(2)
9.2.2.1 GNSS Clock Error
337(1)
9.2.2.2 GNSS Ephemeris Error
338(1)
9.2.2.3 GNSS Code and Carrier Incoherence
338(1)
9.2.2.4 GNSS Signal Distortion
338(1)
9.2.2.5 GNSS L1L2 Bias
338(1)
9.2.2.6 Environment Errors: Ionosphere
339(1)
9.2.2.7 Environment Errors: Troposphere
339(1)
9.2.3 GEO-Associated Errors
339(1)
9.2.3.1 GEO Code and Carrier Incoherence
339(1)
9.2.3.2 GEO-Associated Environment Errors: Ionosphere
340(1)
9.2.3.3 GEO-Associated Environment Errors: Troposphere
340(1)
9.2.4 Receiver and Measurement Processing Errors
340(1)
9.2.4.1 Receiver Measurement Error
340(1)
9.2.4.2 Intercard Bias
340(1)
9.2.4.3 Multipath
341(1)
9.2.4.4 L1L2 Bias
341(1)
9.2.4.5 Receiver Clock Error
341(1)
9.2.4.6 Measurement Processing Unpack/Pack Corruption
341(1)
9.2.5 Estimation Errors
341(1)
9.2.5.1 Reference Time Offset Estimation Error
341(1)
9.2.5.2 Clock Estimation Error
342(1)
9.2.5.3 Ephemeris Correction Error
342(1)
9.2.5.4 L1L2 Wide-Area Reference Equipment (WRE) and GPS Satellite Bias Estimation Error
342(1)
9.2.6 Integrity-Bound Associated Errors
342(1)
9.2.6.1 Ionospheric Modeling Errors
343(1)
9.2.6.2 Fringe Area Ephemeris Error
343(1)
9.2.6.3 Small-Sigma Errors
343(1)
9.2.6.4 Missed Message: Old but Active Data (OBAD)
343(1)
9.2.6.5 Time to Alarm (TTA) Exceeded
343(1)
9.2.7 GEO Uplink Errors
343(1)
9.2.7.1 GEO Uplink System Fails to Receive SBAS Message
343(1)
9.2.8 Mitigation of Integrity Threats
344(16)
9.2.8.1 Mitigation of GNSS Associated Errors
344(2)
9.2.8.2 Mitigation of GEO-Associated Errors
346(1)
9.2.8.3 Mitigation of Receiver and Measurement Processing Errors
347(1)
9.2.8.4 Mitigation of Estimation Errors
348(1)
9.2.8.5 Mitigation of Integrity-Bound-Associated Errors
348(1)
9.3 SBAS Example
349(2)
9.4 Summary
351(1)
9.5 Future: GIC
351(1)
Problems
352(1)
References
352(3)
10 Kalman Filtering 355(64)
10.1
Chapter Focus
355(1)
10.2 Frequently Asked Questions
356(4)
10.3 Notation
360(6)
10.3.1 Real Vectors and Matrices
360(3)
10.3.1.1 Notation
360(1)
10.3.1.2 Vector and Matrix Properties
361(2)
10.3.2 Probability Essentials
363(2)
10.3.2.1 Basic Concepts
363(1)
10.3.2.2 Linearity of the Expectancy Operator E(·)
364(1)
10.3.2.3 Means and Covariances of Linearly Transformed Variates
365(1)
10.3.3 Discrete Time Notation
365(1)
10.3.3.1 Subscripting
365(1)
10.3.3.2 A Priori and A Posteriori Values
365(1)
10.3.3.3 Allowing for Testing and Rejecting Measurements
365(1)
10.4 Kalman Filter Genesis
366(14)
10.4.1 Measurement Update (Corrector)
366(7)
10.4.1.1 Linear Least Mean Squares Estimation: Gauss to Kalman
367(6)
10.4.1.2 Kalman Measurement Update Equations
373(1)
10.4.2 Time Update (Predictor)
373(5)
10.4.2.1 Continuous-Time Dynamics
373(4)
10.4.2.2 Discrete-Time Dynamics
377(1)
10.4.3 Basic Kalman Filter Equations
378(1)
10.4.4 The Time-Invariant Case
378(1)
10.4.5 Observability and Stability Issues
378(2)
10.5 Alternative Implementations
380(8)
10.5.1 Implementation Issues
380(1)
10.5.2 Conventional Implementation Improvements
381(2)
10.5.2.1 Measurement Decorrelation by Diagonalization
381(1)
10.5.2.2 Exploiting Symmetry
382(1)
10.5.2.3 Information Filter
382(1)
10.5.2.4 Sigma Rho Filtering
383(1)
10.5.3 James E. Potter (1937-2005) and Square Root Filtering
383(1)
10.5.4 Square Root Matrix Manipulation Methods
384(2)
10.5.4.1 Cholesky Decomposition
384(1)
10.5.4.2 Modified Cholesky Decomposition
385(1)
10.5.4.3 Nonuniqueness of Matrix Square Roots
386(1)
10.5.4.4 Triangularization by QR Decomposition
386(1)
10.5.4.5 Householder Triangularization
386(1)
10.5.5 Alternative Square Root Filter Implementations
386(2)
10.5.5.1 Potter Implementation
386(1)
10.5.5.2 Carlson "Fast Triangular" Square Root Filter
387(1)
10.5.5.3 Bierman-Thornton UD Filter
387(1)
10.5.5.4 Unscented Square Root Filter
388(1)
10.5.5.5 Square Root Information Filter (SRIF)
388(1)
10.6 Nonlinear Approximations
388(9)
10.6.1 Linear Approximation Errors
389(3)
10.6.2 Adaptive Kalman Filtering
392(1)
10.6.3 Taylor-Maclauren Series Approximations
392(1)
10.6.3.1 First-Order: Extended Kalman Filter
393(1)
10.6.3.2 Second-Order: Bass-Norum-Schwartz Filter
393(1)
10.6.4 Trajectory Perturbation Modeling
393(1)
10.6.5 Structured Sampling Methods
394(3)
10.6.5.1 Sigma-Point Filters
395(1)
10.6.5.2 Particle Filters
396(1)
10.6.5.3 The Unscented Kalman Filter
396(1)
10.7 Diagnostics and Monitoring
397(4)
10.7.1 Covariance Matrix Diagnostics
397(1)
10.7.1.1 Symmetry Control
398(1)
10.7.1.2 Eigenanalysis
398(1)
10.7.1.3 Conditioning
398(1)
10.7.2 Innovations Monitoring
398(3)
10.7.2.1 Kalman Filter Innovations
398(1)
10.7.2.2 Information-Weighted Innovations Monitoring
399(2)
10.8 GNSS-Only Navigation
401(9)
10.8.1 GNSS Dynamic Models
402(4)
10.8.1.1 Receiver Clock Bias Dynamics
402(1)
10.8.1.2 Discrete Time Models
403(1)
10.8.1.3 Exponentially Correlated Random Processes
403(1)
10.8.1.4 Host Vehicle Dynamics for Standalone GNSS Navigation
403(1)
10.8.1.5 Point Mass Dynamic Models
404(2)
10.8.2 GNSS Measurement Models
406(14)
10.8.2.1 Measurement Event Timing
406(1)
10.8.2.2 Pseudoranges
407(1)
10.8.2.3 Time and Distance Correlation
407(1)
10.8.2.4 Measurement Sensitivity Matrix
408(1)
10.8.2.5 Noise Model
408(2)
10.9 Summary
410(2)
Problems
412(2)
References
414(5)
11 Inertial Navigation Error Analysis 419(42)
11.1
Chapter Focus
419(1)
11.2 Errors in the Navigation Solution
420(10)
11.2.1 Navigation Error Variables
421(1)
11.2.2 Coordinates Used for INS Error Analysis
421(1)
11.2.3 Model Variables and Parameters
421(6)
11.2.3.1 INS Orientation Variables and Errors
421(6)
11.2.4 Dynamic Coupling Mechanisms
427(3)
11.3 Navigation Error Dynamics
430(17)
11.3.1 Error Dynamics Due to Velocity Integration
431(1)
11.3.2 Error Dynamics Due to Gravity Miscalculations
432(1)
11.3.2.1 INS Gravity Modeling
432(1)
11.3.2.2 Navigation Error Model for Gravity Calculations
432(1)
11.3.3 Error Dynamics Due to Coriolis Acceleration
433(1)
11.3.4 Error Dynamics Due to Centrifugal Acceleration
434(1)
11.3.5 Error Dynamics Due to Earthrate Leveling
435(1)
11.3.6 Error Dynamics Due to Velocity Leveling
436(1)
11.3.7 Error Dynamics Due to Acceleration and IMU Alignment Errors
437(1)
11.3.8 Composite Model from All Effects
438(1)
11.3.9 Vertical Navigation Instability
439(5)
11.3.9.1 Altimeter Aiding
442(2)
11.3.9.2 Using GNSS for Vertical Channel Stabilization
444(1)
11.3.10 Schuler Oscillations
444(1)
11.3.10.1 Schuler Oscillations with Coriolis Coupling
445(1)
11.3.11 Core Model Validation and Tuning
445(2)
11.3.11.1 Horizontal Inertial Navigation Model
446(1)
11.4 Inertial Sensor Noise Propagation
447(3)
11.4.1 1/f Noise
447(1)
11.4.2 White Noise
447(2)
11.4.3 Horizontal CEP Rate Versus Sensor Noise
449(1)
11.5 Sensor Compensation Errors
450(6)
11.5.1 Sensor Compensation Error Models
450(6)
11.5.1.1 Exponentially Correlated Parameter Drift Models
452(1)
11.5.1.2 Dynamic Coupling into Navigation Errors
453(1)
11.5.1.3 Augmented Dynamic Coefficient Matrix
454(2)
11.5.2 Carouseling and Indexing
456(1)
11.6
Chapter Summary
456(2)
11.6.1 Further Reading
457(1)
Problems
458(1)
References
459(2)
12 GNSS/INS Integration 461(28)
12.1
Chapter Focus
461(1)
12.2 New Application Opportunities
462(6)
12.2.1 Integration Advantages
462(1)
12.2.1.1 Exploiting Complementary Error Characteristics
462(1)
12.2.1.2 Cancelling Vulnerabilities
463(1)
12.2.2 Enabling New Capabilities
463(1)
12.2.2.1 Real-Time Inertial Sensor Error Compensation
463(1)
12.2.2.2 INS Initialization on the Move
463(1)
12.2.2.3 Antenna Switching
464(1)
12.2.2.4 Antenna-INS Offsets
464(1)
12.2.3 Economic Factors
464(4)
12.2.3.1 Economies of Scale
464(1)
12.2.3.2 Implementation Tradeoffs
465(3)
12.3 Integrated Navigation Models
468(8)
12.3.1 Common Navigation Models
468(2)
12.3.2 GNSS Error Models
470(3)
12.3.2.1 GNSS Time Synchronization
470(1)
12.3.2.2 Receiver Clock Error Model
470(2)
12.3.2.3 Propagation Delay
472(1)
12.3.2.4 Pseudorange Measurement Noise
473(1)
12.3.3 INS Error Models
473(1)
12.3.3.1 Navigation Error Model
473(1)
12.3.3.2 Sensor Compensation Errors
473(1)
12.3.4 GNSS/INS Error Model
474(2)
12.3.4.1 State Variables
474(1)
12.3.4.2 Numbers of State Variables
474(1)
12.3.4.3 Dynamic Coefficient Matrix
475(1)
12.3.4.4 Process Noise Covariance
475(1)
12.3.4.5 Measurement Sensitivities
476(1)
12.4 Performance Analysis
476(9)
12.4.1 The Influence of Trajectories
476(1)
12.4.2 Performance Metrics
477(2)
12.4.2.1 Application-Dependent Performance Metrics
477(1)
12.4.2.2 General-Purpose Metrics
478(1)
12.4.2.3 Mean Squared Error Metrics
478(1)
12.4.2.4 Probabilistic Metrics
479(1)
12.4.3 Dynamic Simulation Model
479(1)
12.4.3.1 State Transition Matrices
479(1)
12.4.3.2 Dynamic Simulation
480(1)
12.4.4 Sample Results
480(17)
12.4.4.1 Stand-Alone GNSS Performance
480(2)
12.4.4.2 INS-Only Performance
482(2)
12.4.4.3 Integrated GNSS/INS Performance
484(1)
12.5 Summary
485(1)
Problems
486(1)
References
487(2)
Appendix A Software 489(8)
A.1 Software Sources
489(1)
A.2 Software for
Chapter 2
490(1)
A.3 Software for
Chapter 3
490(1)
A.4 Software for
Chapter 4
490(1)
A.5 Software for
Chapter 7
491(1)
A.6 Software for
Chapter 10
491(1)
A.7 Software for
Chapter 11
492(1)
A.8 Software for
Chapter 12
493(1)
A.9 Software for Appendix B
494(1)
A.10 Software for Appendix C
494(1)
A.11 GPS Almanac/Ephemeris Data Sources
495(2)
Appendix B Coordinate Systems and Transformations 497(54)
B.1 Coordinate Transformation Matrices
497(3)
B.1.1 Notation
497(1)
B.1.2 Definitions
498(1)
B.1.3 Unit Coordinate Vectors
498(1)
B.1.4 Direction Cosines
499(1)
B.1.5 Composition of Coordinate Transformations
500(1)
B.2 Inertial Reference Directions
500(1)
B.2.1 Earth's Polar Axis and the Equatorial Plane
500(1)
B.2.2 The Ecliptic and the Vernal Equinox
500(1)
B.2.3 Earth-Centered Inertial (ECI) Coordinates
501(1)
B.3 Application-dependent Coordinate Systems
501(19)
B.3.1 Cartesian and Polar Coordinates
501(1)
B.3.2 Celestial Coordinates
502(1)
B.3.3 Satellite Orbit Coordinates
503(1)
B.3.4 Earth-Centered Inertial (ECI) Coordinates
504(1)
B.3.5 Earth-Centered, Earth-Fixed (ECEF) Coordinates
505(7)
B.3.5.1 Longitude in ECEF Coordinates
505(1)
B.3.5.2 Latitudes in ECEF Coordinates
505(1)
B.3.5.3 Latitude on an Ellipsoidal Earth
506(1)
B.3.5.4 Parametric Latitude
506(1)
B.3.5.5 Geodetic Latitude
507(3)
B.3.5.6 WGS84 Reference Geoid Parameters
510(1)
B.3.5.7 Geocentric Latitude
510(2)
B.3.5.8 Geocentric Radius
512(1)
B.3.6 Ellipsoidal Radius of Curvature
512(1)
B.3.7 Local Tangent Plane (LTP) Coordinates
513(3)
B.3.7.1 Alpha Wander Coordinates
513(1)
B.3.7.2 ENU/NED Coordinates
514(1)
B.3.7.3 ENU/ECEF Coordinates
514(1)
B.3.7.4 NED/ECEF Coordinates
515(1)
B.3.8 Roll-Pitch-Yaw (RPY) Coordinates
516(1)
B.3.9 Vehicle Attitude Euler Angles
516(2)
B.3.9.1 RPY/ENU Coordinates
517(1)
B.3.10 GPS Coordinates
518(2)
B.4 Coordinate Transformation Models
520(27)
B.4.1 Euler Angles
521(1)
B.4.2 Rotation Vectors
522(16)
B.4.2.1 Rotation Vector to Matrix
523(1)
B.4.2.2 Matrix to Rotation Vector
524(2)
B.4.2.3 Special Cases for sin(0) almost = to 0
526(1)
B.4.2.4 MATLAB® Implementations
527(1)
B.4.2.5 Time Derivatives of Rotation Vectors
527(6)
B.4.2.6 Time Derivatives of Matrix Expressions
533(3)
B.4.2.7 Partial Derivatives with Respect to Rotation Vectors
536(2)
B.4.3 Direction Cosines Matrix
538(4)
B.4.3.1 Rotating Coordinates
538(4)
B.4.4 Quaternions
542(5)
B.4.4.1 Quaternion Matrices
542(1)
B.4.4.2 Addition and Multiplication
543(1)
B.4.4.3 Conjugation
544(1)
B.4.4.4 Representing Rotations
545(2)
B.5 Newtonian Mechanics in Rotating Coordinates
547(4)
B.5.1 Rotating Coordinates
547(1)
B.5.2 Time Derivatives of Matrix Products
548(1)
B.5.3 Solving for Centrifugal and Coriolis Accelerations
548(3)
Appendix C PDF Ambiguity Errors in Nonlinear Kalman Filtering 551(14)
C.1 Objective
551(1)
C.2 Methodology
552(6)
C.2.1 Computing Expected Values
552(1)
C.2.2 Representative Sample of PDFs
553(3)
C.2.3 Parametric Class of Nonlinear Transformations Used
556(2)
C.2.4 Ambiguity Errors in Nonlinearly Transformed Means and Variances
558(1)
C.3 Results
558(5)
C.3.1 Nonlinearly Transformed Means
558(1)
C.3.2 Nonlinearly Transformed Variances
559(4)
C.4 Mitigating Application-specific Ambiguity Errors
563(1)
References
564(1)
Index 565
MOHINDER S. GREWAL, PHD, PE, is a Professor of Electrical Engineering in the College of Engineering and Computer Science at California State University, Fullerton.

ANGUS P. ANDREWS, PHD, was a Senior Scientist (now retired) at the Rockwell Science Center, in Thousand Oaks, California.

CHRIS G. BARTONE, PHD, PE, is a Professor of Electrical Engineering in the Russ College of Engineering and Technology, School of Electrical Engineering and Computer Science at Ohio University, Athens, OH.