Muutke küpsiste eelistusi

Glycochemical Synthesis: Strategies and Applications [Kõva köide]

  • Formaat: Hardback, 576 pages, kõrgus x laius x paksus: 236x158x36 mm, kaal: 885 g
  • Ilmumisaeg: 28-Oct-2016
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 1118299841
  • ISBN-13: 9781118299845
Teised raamatud teemal:
  • Formaat: Hardback, 576 pages, kõrgus x laius x paksus: 236x158x36 mm, kaal: 885 g
  • Ilmumisaeg: 28-Oct-2016
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 1118299841
  • ISBN-13: 9781118299845
Teised raamatud teemal:
This book is a comprehensive and concise review on principles, strategies, and crucial advances in glycochemistry. It focuses on synthesis and practical applications and emphasizes state-of-the-art approaches to the assembly and design of sugars.

    Provides detailed discussion on specific topics like oligosaccharide assembly and design of sugars, techniques in glycoconjugate preparation, multivalency, and carbohydrate-based drug design     Uses notable examples, like solution-based one-pot methods and automated methods for sugar assembly, to illustrate important concepts and advances in a rapidly emerging field     Discusses practical applications of carbohydrates, like medicine, therapeutics, drug and vaccine development
Contributors xv
Foreword xix
Preface xxiii
1 Glycochemistry: Overview and Progress 1(34)
Matthew Schombs
Jacquelyn Gervay-Hague
1.1 Introduction
1(1)
1.2 Nomenclature, Structures, and Properties of Sugars
2(10)
1.2.1 Fischer Projection
3(1)
1.2.2 Linear Forms of Monosaccharides
4(2)
1.2.3 Cyclic Forms of Monosaccharides
6(1)
1.2.4 Haworth and Mills Projections
6(1)
1.2.5 Reeves Projection
7(1)
1.2.6 Conformational Analysis
7(3)
1.2.7 Disaccharides, Oligosaccharides, and Polysaccharides
10(1)
1.2.8 Anomeric Effect
11(1)
1.2.9 Mutarotation
12(1)
1.3 Historical Overview of Carbohydrate Research
12(10)
1.3.1 Emil Fischer (1852-1919): The Father of Carbohydrate Chemistry
13(2)
1.3.2 Koenigs-Knorr Reaction
15(1)
1.3.3 Karl Freudenberg (1886-1983)
16(1)
1.3.4 Burckhardt Helferich (1887-1982)
16(1)
1.3.5 Hermann Fischer (1888-1960)
17(1)
1.3.6 Claude Hudson (1881-1952)
17(1)
1.3.7 Horace Isbell (1898-1992)
18(1)
1.3.8 Melville Wolfrom (1900-1969)
18(1)
1.3.9 "Sugar" Raymond Lemieux (1920-2000)
19(1)
1.3.10 Ascent of De Novo Sugar Synthesis
20(2)
1.4 Onward to the Twenty-First Century
22(6)
1.4.1 Glycosyl Donors and Glycosylation Systems
22(2)
1.4.2 Automated and One-Pot Methods for Oligosaccharide Synthesis
24(1)
1.4.3 Solid-Phase Oligosaccharide Synthesis
25(1)
1.4.4 Natural Product Synthesis
25(1)
1.4.5 Carbohydrate-Based Therapeutics
26(2)
1.5 Conclusion and Outlook
28(1)
References
29(6)
2 Protecting Group Strategies in Carbohydrate Synthesis 35(34)
Shang-Cheng Hung
Cheng-Chung Wang
2.1 Introduction
35(1)
2.2 General Considerations for Protecting Group Selection
36(2)
2.2.1 Retrosynthesis
36(1)
2.2.2 Neighboring Group Participation
37(1)
2.2.3 Inductive Effect
38(1)
2.3 Common Protecting Groups in Carbohydrate Synthesis
38(8)
2.3.1 Benzyl Ethers
38(2)
2.3.2 Allyl Ethers
40(1)
2.3.3 Silyl Ethers
41(1)
2.3.4 Esters
42(1)
2.3.5 Amine Protecting Groups
43(2)
2.3.6 Diol Protection with Acetals and Ketals
45(1)
2.4 Regioselective Protection of Monosaccharides
46(11)
2.4.1 Through Differentiation of Primary Hydroxyls Using Bulky Protecting Groups
47(3)
2.4.2 Through Protection of Diols with Acetals or Ketals
50(7)
2.5 One-Pot Protection Methods
57(4)
2.6 Conclusion
61(1)
References
62(7)
3 General Aspects in 0-Glycosidic Bond Formation 69(28)
Xin-Shan Ye
Weigang Lu
3.1 Introduction
69(1)
3.2 Some Basic Concepts
69(5)
3.2.1 Mechanism of Glycosylation
70(1)
3.2.2 Stereoselectivity
70(1)
3.2.3 Anomeric Effect
70(1)
3.2.4 Participation by Functional Groups in the Glycosyl Donor
71(1)
3.2.5 The Armed-Disarmed Concept
72(1)
3.2.6 Additives
72(1)
3.2.7 Solvent Effect
73(1)
3.2.8 Effects of Other Factors on Glycosylation
73(1)
3.3 Methods for Glycosidic Bond Formation
74(12)
3.3.1 Glycosyl Halides
74(2)
3.3.2 Glycosyl Trichloroacetimidates
76(2)
3.3.3 Thioglycosides
78(2)
3.3.4 n-Pentenyl Glycosides
80(1)
3.3.5 Carboxybenzyl Glycosides
81(2)
3.3.6 Glycosyl Phosphates/Phosphites
83(1)
3.3.7 Dehydrative Glycosylation
84(1)
3.3.8 Glycals
84(2)
3.3.9 Other Glycosylation Protocols
86(1)
3.4 Glycosylation Strategies
86(5)
3.4.1 One-Pot Glycosylation
87(1)
3.4.2 Solid-Phase Oligosaccharide Synthesis
88(2)
3.4.3 Chemoenzymatic Glycosylation
90(1)
3.5 Conclusion
91(1)
References
91(6)
4 Controlling Anomeric Selectivity, Reactivity, and Regioselectivity in Glycosylations Using Protecting Groups 97(34)
Thomas Jan Boltje
Lin Liu
Geert-Jan Boons
4.1 Introduction
97(1)
4.2 Protecting Group and Control of Anomeric Selectivity of Glycosylations
98(17)
4.2.1 Neighboring Group Participation of C2 Esters to Afford 1,2-trans-Glycosides
98(1)
4.2.2 Remote Neighboring Group Participation
99(1)
4.2.3 Neighboring Group Participation by Other Functional Groups
100(3)
4.2.4 Neighboring Group Participation Using Chiral Auxiliaries to Obtain 1,2-cis-Glycosides
103(3)
4.2.5 Intramolecular Aglycone Delivery
106(2)
4.2.6 Anomeric Control by Electronic and Steric Effects
108(4)
4.2.7 Conformational Selection Using a 3,5-O-Di-tert-Butylsilylidene Protecting Group
112(2)
4.2.8 Stereoselective Introduction of 2-Deoxy-2-Aminoglycosides
114(1)
4.3 Use of Protecting Groups for Chemoselective Glycosylations
115(3)
4.4 Protecting Groups in Regioselective Glycosylations
118(7)
4.5 Conclusion
125(1)
References
125(6)
5 Stereocontrolled Synthesis of Sialosides 131(24)
Chandrasekhar Navuluri
David Crich
5.1 Introduction
131(1)
5.2 Conformational Analysis of Sialyl Oxocarbenium Ions
132(1)
5.3 Additives in Sialylations
133(1)
5.4 Leaving Groups in Sialylations
134(1)
5.5 Influence of the N5 Protecting Group on Reactivity and Selectivity
134(5)
5.6 4-O,5-N-Oxazolidinone Group and its Stereodirecting Influence on Sialylations
139(5)
5.7 4,5-O-Carbonate Protecting Group in a-Selective KDN Donors
144(1)
5.8 Other Cyclic and Bicyclic Protecting Systems for Sialyl Donors
145(1)
5.9 Mechanistic Aspects of Sialylation with Cyclically Protected Sialyl Donors
146(1)
5.10 Influence of Hydroxy Protecting Groups on Sialyl Donor Reactivity and Selectivity
147(1)
5.11 Stereoselective C-Sialoside Formation
148(1)
5.12 Stereoselective S-Sialoside Formation
149(2)
5.13 Conclusion
151(1)
References
151(4)
6 Strategies for One-Pot Synthesis of Oligosaccharides 155(34)
Bo Yang
Keisuke Yoshida
Xuefei Huang
6.1 Introduction
155(1)
6.2 One-Pot Glycosylation from the Nonreducing End to the Reducing End
156(19)
6.2.1 Reactivity-Based One-Pot Glycosylation: Fine-Tuning of Anomeric Reactivities
156(9)
6.2.2 One-Pot Glycosylation Based on Chemoselective Activation of Different Types of Glycosyl Donors
165(5)
6.2.3 Preactivation-Based Reactivity-Independent One-Pot Glycosylation
170(5)
6.3 Regioselective One-Pot Glycosylation: Construction of Oligosaccharides from the Reducing End to the Nonreducing End
175(4)
6.4 Hybrid One-Pot Glycosylation
179(4)
6.5 Conclusion
183(1)
Acknowledgments
183(1)
References
183(6)
7 Automated Oligosaccharide Synthesis: Techniques and Applications 189(16)
Matron Hurevich
Jeyakumar Kandasamy
Peter H. Seeberger
7.1 Introduction
189(1)
7.2 Challenges and Limitations in Solution-Phase Oligosaccharide Synthesis
190(1)
7.3 Solid-Phase Oligosaccharide Synthesis
191(2)
7.3.1 Strategies for Solid-Phase Oligosaccharide Synthesis
192(1)
7.4 Automated Oligosaccharide Synthesis
193(6)
7.4.1 Technological Aspects of Automated Solid-Phase Oligosaccharide Synthesis
193(1)
7.4.2 The First Decade of Automated Synthesis of Oligosaccharides
194(3)
7.4.3 Recent Improvements in Automated Oligosaccharide Synthesis
197(1)
7.4.4 Automated Synthesis of Conjugation-Ready Oligosaccharides
197(2)
7.4.5 HPLC-Assisted Automated Oligosaccharide Synthesis
199(1)
7.5 Microfluidic Techniques for Oligosaccharide Synthesis
199(3)
7.6 Conclusion and Outlook
202(1)
Acknowledgments
202(1)
References
202(3)
8 Sugar Synthesis by Microfluidic Techniques 205(16)
Koichi Fukase
Katsunori Tanaka
Yukari Fujimoto
Atsushi Shimoyama
Yoshiyuki Manabe
8.1 Introduction
205(1)
8.2 Microfluidic Glycosylation
206(10)
8.2.1 Microfluidic alpha-Sialylation
206(6)
8.2.2 Glycosylation with KDO
212(2)
8.2.3 Stereoselective beta-Mannosylation under the Integrated Microfluidic and Batch Conditions
214(1)
8.2.4 Chemical N-Glycosylation of Asparagine under the Integrated Microfluidic and Batch Conditions
215(1)
8.3 Conclusion
216(1)
References
217(4)
9 Chemoenzymatic Synthesis of Carbohydrates 221(14)
Kasemsiri Chandarajoti
Jian Liu
9.1 Introduction
221(1)
9.2 Oligosaccharides and Polysaccharides Produced by GTases
222(1)
9.3 Chemoenzymatic Synthesis of HS
223(8)
9.3.1 Biosynthetic Pathway of HS and HS Biosynthetic Enzymes
224(1)
9.3.2 Application of Biosynthetic Enzymes in HS and Heparin Oligosaccharide Synthesis
224(4)
9.3.3 Strategy for Controlled Chemoenzymatic Synthesis
228(3)
9.4 Conclusion
231(1)
References
231(4)
10 Synthesis of Glycosaminoglycans 235(28)
Medel Manuel L. Zulueta
Shu-Yi Lin
Yu-Peng Hu
Shang-Cheng Hung
10.1 Introduction
235(3)
10.2 General Strategies
238(2)
10.3 Synthesis of Derivatives of L-Idose and IdoA
240(2)
10.4 Synthesis via Stepwise Solution-Phase Assembly and Compound Diversification
242(8)
10.5 Synthesis via Solution-Phase One-Pot Assembly
250(3)
10.6 Polymer-Supported Synthesis and Automation
253(3)
10.7 GAG Mimetics
256(1)
10.8 Conclusion
257(1)
References
258(5)
11 Chemical Glycoprotein Synthesis 263(30)
Yasuhiro Kajihara
Masumi Murakami
Carlo Unverzagt
11.1 Introduction
263(1)
11.2 Oligosaccharide Structures
264(1)
11.3 Biosynthesis of Glycoproteins
265(2)
11.4 Chemical Protein Synthesis
267(2)
11.4.1 Native Chemical Ligation
267(1)
11.4.2 NCL without the aa-Cys Junction
268(1)
11.5 Synthesis of Glycopeptides
269(1)
11.6 Synthesis of Glycopeptide-athioesters
270(5)
11.6.1 Safety-Catch Linker
271(1)
11.6.2 Thioesterification via Activation of C-Terminal Carboxylic Acids
271(1)
11.6.3 Convergent Methods for the Synthesis of Glycopeptide-alphaThioesters
272(1)
11.6.4 Thioesterification via O->S Transesterification for the Synthesis of Glycopeptide-alphaThioesters
273(1)
11.6.5 Boc-SPPS for the Synthesis of Sialylglycopeptide-1Thioesters
274(1)
11.7 Chemical Synthesis of Glycoproteins
275(13)
11.7.1 Antibacterial Glycoprotein Diptericin Bearing Two 0-Linked Ga1NAc Residues
275(1)
11.7.2 Lymphotactin
276(1)
11.7.3 Bacterial Immunity Protein Im7
276(2)
11.7.4 MUC-2
278(1)
11.7.5 GlyCAM-1
279(1)
11.7.6 Monocyte Chemotactic Protein-3
280(1)
11.7.7 Ribonuclease
281(1)
11.7.8 Antifreeze Glycoproteins
281(1)
11.7.9 Interleukin-8
282(1)
11.7.10 Interferon-beta-1a
283(1)
11.7.11 Saposin C
284(1)
11.7.12 Erythropoietin
285(3)
11.8 Conclusion
288(1)
References
288(5)
12 Synthesis of Glycosphingolipids 293(34)
Suvarn S. Kulkarni
12.1 Introduction
293(1)
12.2 Classification and Nomenclature of GSLs
294(2)
12.3 Biological Significance of GSLs
296(1)
12.4 Synthesis of GSLs
297(23)
12.4.1 Synthesis of Globo- and Isoglobo-Series GSLs
297(13)
12.4.2 Synthesis of Gangliosides
310(10)
12.5 Conclusion
320(1)
References
320(7)
13 Synthesis of Glycosylphosphatidylinositol Anchors 327(34)
Charles Johnson
Zhongwu Guo
13.1 Introduction
327(1)
13.2 Synthesis of the Tryp. brucei GPI Anchor
328(5)
13.3 Synthesis of the Yeast GPI Anchor
333(2)
13.4 Synthesis of the Rat Brain Thy-1 GPI Anchor
335(5)
13.5 Synthesis of Plasmodium falciparum GPI Anchor
340(4)
13.6 Synthesis of Trypanosoma cruzi GPI Anchor
344(5)
13.7 Synthesis of a Human Sperm CD52 Antigen GPI Anchor
349(2)
13.8 Synthesis of a Human Lymphocyte CD52 Antigen GPI Anchor
351(3)
13.9 Synthesis of the Branched GPI Anchor of Toxoplasma gondii
354(1)
13.10 Conclusion
355(1)
Acknowledgment
356(1)
References
357(4)
14 Synthesis of Bacterial Cell Envelope Components 361(46)
Akihiro Ishiwata
Yukishige Ito
14.1 Introduction
361(1)
14.2 Peptidoglycan and Related Glycoconjugates
362(9)
14.2.1 Lipid I, II, and IV Analogues
362(4)
14.2.2 Peptidoglycan Fragments
366(5)
14.3 LPS and Related Glycoconjugates
371(9)
14.3.1 Lipid A
371(2)
14.3.2 Oligo-KDO and Inner-Core Oligosaccharide
373(3)
14.3.3 Outer-Core Polysaccharides
376(1)
14.3.4 Capsular Polysaccharide
377(1)
14.3.5 Secondary Cell-Wall Polysaccharide
378(1)
14.3.6 Zwitterionic Polysaccharide
378(2)
14.4 Lipoteichoic Acid
380(2)
14.5 Mycolyl Arabinogalactan, LAM, and Related Glycoconjugates
382(8)
14.5.1 Arabinan, Galactan, and Related Glycoconjugates
382(5)
14.5.2 Mycolates and Related Glycoconjugates
387(1)
14.5.3 LAM and Related Glycoconjugates
388(2)
14.6 Oligosaccharides of Bacterial Glycoprotein and Related Glycoconjugates
390(4)
14.6.1 o-Linked Oligosaccharide from Bacillus Collagen-Like Protein of Anthracis
390(2)
14.6.2 N-Linked Glycans from the Gram-Negative Bacterium C. jejuni
392(2)
14.7 Conclusion
394(1)
References
395(12)
15 Discoveries and Applications of Glycan Arrays 407(18)
Chung-Yi Wu
Shih-Huang Chang
15.1 Introduction
407(1)
15.2 Discoveries of Glycan Arrays
407(5)
15.2.1 General
407(1)
15.2.2 Noncovalent Glycan Arrays
408(1)
15.2.3 Covalent Glycan Arrays
409(2)
15.2.4 Quality Control of Glycan Arrays
411(1)
15.2.5 Detection Methods of Glycan Arrays
411(1)
15.3 Applications of Glycan Array
412(6)
15.3.1 Enzyme Activity/Inhibition Studies
412(1)
15.3.2 Glycan Array for Diseases Detection and Vaccine Development
413(4)
15.3.3 Consortium for Functional Glycomics
417(1)
15.4 Conclusion
418(1)
References
418(7)
16 Synthesis and Applications of Glyconanoparticles, Glycodendrimers, and Glycoclusters in Biological Systems 425(30)
Avijit Kumar Adak
Ching-Ching Yu
Chun-Cheng Lin
16.1 Introduction
425(1)
16.2 Significance of Multivalent Binding Interactions in Biological Systems
426(2)
16.3 Glyconanoparticles, Glycodendrimers, and Glycoclusters: General Overview
428(3)
16.4 Plant Lectins
431(7)
16.4.1 Concanavalin A
431(5)
16.4.2 Peanut Agglutinin
436(1)
16.4.3 Wheat Germ Agglutinin
437(1)
16.4.4 Ricinus communis Agglutinin 120
437(1)
16.4.5 Other Plant Lectins
438(1)
16.5 AB5 Toxins
438(2)
16.5.1 Cholera Toxin
439(1)
16.5.2 Shiga-Like Toxins
439(1)
16.6 Bacterial Adhesion Lectins
440(5)
16.6.1 FimH Adhesin
441(1)
16.6.2 PA-IL and PA-IIL
442(3)
16.7 Influenza Virus
445(1)
16.8 Detection of Bacteria
445(1)
16.9 Glyco-MNPs as Nanoprobes for Labeling Cells and Magnetic Resonance Imaging Agents
446(1)
16.10 Cyclopeptide-Based Glycoclusters as Vaccine Adjuvants
447(2)
16.11 Conclusion
449(1)
Acknowledgments
449(1)
References
450(5)
17 Design and Synthesis of Carbohydrates and Carbohydrate Mimetics as Anti-Influenza Agents 455(28)
Mauro Pascolutti
Mark von Itzstein
17.1 Introduction
455(1)
17.2 Influenza Viruses
456(3)
17.2.1 Virus Morphology
456(1)
17.2.2 Influenza A Virus Epidemiology
457(1)
17.2.3 Influenza A Virus Life Cycle
458(1)
17.3 Development of Anti-Influenza Therapeutics
459(1)
17.4 Sialic Acid: The Viral Cell-Surface Receptor Ligand
460(1)
17.5 Hemagglutinin
460(1)
17.6 Sialidase
461(3)
17.6.1 Influenza Virus Sialidase Active Site
461(2)
17.6.2 Catalytic Mechanism of Influenza Virus Sialidase
463(1)
17.7 Influenza Virus Sialidase as a Drug Discovery Target
464(7)
17.7.1 Structure-Based Sialidase Inhibitor Design on a Sialic Acid Scaffold: Development of Zanamivir
464(2)
17.7.2 Second-Generation Zanamivir
466(2)
17.7.3 Sialidase Inhibitors Based on a Cyclohexene Scaffold: Development of Oseltamivir
468(2)
17.7.4 Sialidase Inhibitors Based on Five-Membered Ring Scaffolds
470(1)
17.7.5 Sialidase Inhibitors Based on an Aromatic Ring Scaffold
471(1)
17.8 Structural Differences Recently Identified in Influenza a Virus Sialidase Subtypes
471(2)
17.9 New Influenza Virus Sialidase Inhibitors Targeting the 150-Cavity
473(3)
References
476(7)
18 Design and Synthesis of Ligands and Antagonists of Siglecs as Immune Response Modifiers 483(26)
Hajjaj H.M. Abdu-Allah
Hideharu Ishida
Makoto Kiso
18.1 Introduction
483(1)
18.2 Lectins
484(1)
18.3 Siglecs
484(5)
18.3.1 Ligands for Siglecs
486(1)
18.3.2 Structural Features for Siglec Recognition
487(1)
18.3.3 Sialic Acid Substructural Specificities for Siglecs
487(2)
18.4 Siglecs and Innate Immunity
489(5)
18.4.1 Pathogen Internalization by Innate Immune Cells: Phagocytosis and Endocytosis by Siglecs
490(1)
18.4.2 Attenuation of Inflammatory Responses
491(1)
18.4.3 Immune Evasion by Pathogens via Siglec Ligation
491(1)
18.4.4 Regulation of the Life Span of Myeloid Cells in the Context of Inflammation by Siglec-8, Siglec-9, and Siglec-F
492(1)
18.4.5 Regulation of NK Cell Function by Siglec-7
492(1)
18.4.6 Direct Role for Siglecs in T Cells
493(1)
18.4.7 Siglecs in B-Cell Biology and Maintenance of Immunological Tolerance
493(1)
18.5 Design and Synthesis of High-Affinity Ligands for Siglecs
494(7)
18.5.1 Sialoadhesin
494(1)
18.5.2 CD22
495(6)
18.6 Conclusion and Future Directions
501(1)
References
502(7)
19 Sugar-Protein Hybrids for Biomedical Applications 509(26)
Macarena Sanchez-Navarro
Benjamin G. Davis
19.1 Introduction
509(1)
19.2 Challenges in the Development of Glycoprotein-Based Therapeutics
510(1)
19.3 Why Unnatural?
510(1)
19.4 Retrosynthetic Analysis
511(1)
19.5 Linkages
512(9)
19.5.1 Thioether
512(2)
19.5.2 Disulfides
514(1)
19.5.3 Amide
514(1)
19.5.4 Amine
515(1)
19.5.5 Amidine
516(1)
19.5.6 Urea and Thiourea
516(1)
19.5.7 Diazonium
517(1)
19.5.8 Triazole
517(1)
19.5.9 Oxime
518(1)
19.5.10 CC Bond Formation
519(1)
19.5.11 Enzymatic Extension
520(1)
19.6 Glycoprotein-Based Therapeutics
521(6)
19.6.1 Carbohydrate-Protein-Based (Glycoconjugate) Vaccines
521(1)
19.6.2 Synthetic Glycoproteins as Pathogen-Process Inhibitors
522(2)
19.6.3 Targeted Delivery
524(1)
19.6.4 Enzyme-Replacement Therapy
525(1)
19.6.5 Synthetic Glycoproteins as In Vivo Reporters of Disease
526(1)
19.7 Conclusion
527(1)
References
527(8)
Index 535
Shang-Cheng Hung, PhD, is a Distinguished Research Fellow of the Genomics Research Center, Academia Sinica, Taiwan. His work focuses on carbohydrate chemistry and chemical biology, including the development of novel approaches to glycan synthesis and the acquisition of important cell-surface glycan components together with their biological evaluations.

Medel Manuel L. Zulueta, PhD, is a carbohydrate chemist at the Genomics Research Center, Academia Sinica, Taiwan. He develops of strategies for the chemical synthesis of oligosaccharides, particularly heparin and heparan sulfate.