Muutke küpsiste eelistusi

Graded Finite Element Methods for Elliptic Problems in Nonsmooth Domains 1st ed. 2022 [Pehme köide]

  • Formaat: Paperback / softback, 179 pages, kõrgus x laius: 235x155 mm, kaal: 302 g, 27 Illustrations, color; 23 Illustrations, black and white; X, 179 p. 50 illus., 27 illus. in color., 1 Paperback / softback
  • Sari: Surveys and Tutorials in the Applied Mathematical Sciences 10
  • Ilmumisaeg: 03-Sep-2022
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031058208
  • ISBN-13: 9783031058202
Teised raamatud teemal:
  • Pehme köide
  • Hind: 48,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 179 pages, kõrgus x laius: 235x155 mm, kaal: 302 g, 27 Illustrations, color; 23 Illustrations, black and white; X, 179 p. 50 illus., 27 illus. in color., 1 Paperback / softback
  • Sari: Surveys and Tutorials in the Applied Mathematical Sciences 10
  • Ilmumisaeg: 03-Sep-2022
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031058208
  • ISBN-13: 9783031058202
Teised raamatud teemal:

This book develops a class of graded finite element methods to solve singular elliptic boundary value problems in two- and three-dimensional domains. It provides an approachable and self-contained presentation of the topic, including both the mathematical theory and numerical tools necessary to address the major challenges imposed by the singular solution. Moreover, by focusing upon second-order equations with constant coefficients, it manages to derive explicit results that are accessible to the broader computation community. Although written with mathematics graduate students and researchers in mind, this book is also relevant to applied and computational mathematicians, scientists, and engineers in numerical methods who may encounter singular problems.

The Finite Element Method.- The Function Space.- Singularities and Graded Mesh Algorithms.- Error Estimates in Polygonal Domains.- Regularity Estimates and Graded Meshes in Polyhedral Domains.- Anisotropic Error Estimates in Polyhedral Domains.