Muutke küpsiste eelistusi

Graph Embedding for Pattern Analysis 2013 ed. [Kõva köide]

Edited by , Edited by
  • Formaat: Hardback, 260 pages, kõrgus x laius: 235x155 mm, kaal: 5266 g, VIII, 260 p., 1 Hardback
  • Ilmumisaeg: 17-Nov-2012
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 146144456X
  • ISBN-13: 9781461444565
  • Kõva köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 260 pages, kõrgus x laius: 235x155 mm, kaal: 5266 g, VIII, 260 p., 1 Hardback
  • Ilmumisaeg: 17-Nov-2012
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 146144456X
  • ISBN-13: 9781461444565
Graph Embedding for Pattern Recognition covers theory methods, computation, and applications widely used in statistics, machine learning, image processing, and computer vision. This book presents the latest advances in graph embedding theories, such as nonlinear manifold graph, linearization method, graph based subspace analysis, L1 graph, hypergraph, undirected graph, and graph in vector spaces. Real-world applications of these theories are spanned broadly in dimensionality reduction, subspace learning, manifold learning, clustering, classification, and feature selection. A selective group of experts contribute to different chapters of this book which provides a comprehensive perspective of this field.

This book presents advances in graph embedding theories, such as nonlinear manifold graph, linearization method, graph based subspace analysis, L1 graph, hypergraph, undirected graph and graph in vector spaces, and describes their real-world applications.

Arvustused

From the reviews:

The papers in this collection apply the methods elaborated in classical and algebraic graph theory to analyze patterns in various contexts. the book will be easy for a researcher well versed in the theoretical fundamentals of the presented methods. the editors have been able to structure the contents in an effective and interesting way. Therefore, I can recommend this volume as a useful reference for specialists in the field. (Piotr Cholda, Computing Reviews, November, 2013)

Multilevel Analysis of Attributed Graphs for Explicit Graph Embedding in Vector Spaces
1(26)
Muhammad Muzzamil Luqman
Jean-Yves Ramel
Josep Llados
Feature Grouping and Selection Over an Undirected Graph
27(18)
Sen Yang
Lei Yuan
Ying-Cheng Lai
Xiaotong Shen
Peter Wonka
Jieping Ye
Median Graph Computation by Means of Graph Embedding into Vector Spaces
45(28)
Miquel Ferrer
Itziar Bardaji
Ernest Valveny
Dimosthenis Karatzas
Horst Bunke
Patch Alignment for Graph Embedding
73(46)
Yong Luo
Dacheng Tao
Chao Xu
Improving Classifications Through Graph Embeddings
119(20)
Anirban Chatterjee
Sanjukta Bhowmick
Padma Raghavan
Learning with e1-Graph for High Dimensional Data Analysis
139(18)
Jianchao Yang
Bin Cheng
Shuicheng Yan
Yun Fu
Thomas Huang
Graph-Embedding Discriminant Analysis on Riemannian Manifolds for Visual Recognition
157(20)
Sareh Shirazi
Azadeh Alavi
Mehrtash T. Harandi
Brian C. Lovell
A Flexible and Effective Linearization Method for Subspace Learning
177(28)
Feiping Nie
Dong Xu
Ivor W. Tsang
Changshui Zhang
A Multi-graph Spectral Framework for Mining Multi-source Anomalies
205(24)
Jing Gao
Nan Du
Wei Fan
Deepak Turaga
Srinivasan Parthasarathy
Jiawei Han
Graph Embedding for Speaker Recognition
229
Z.N. Karam
W.M. Campbell
Dr. Yun Fu is a professor at the State University of New York at Buffalo Dr. Yunqian Ma is a senior principal research scientist of Honeywell Labs at the Honeywell International Inc.