Muutke küpsiste eelistusi

Graphs in Biomedical Image Analysis: 6th International Workshop, GRAIL 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 6, 2024, Proceedings [Pehme köide]

Edited by , Edited by
  • Formaat: Paperback / softback, 142 pages, kõrgus x laius: 235x155 mm, 37 Illustrations, color; 7 Illustrations, black and white; XII, 142 p. 44 illus., 37 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 15182
  • Ilmumisaeg: 02-Mar-2025
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031832426
  • ISBN-13: 9783031832420
Teised raamatud teemal:
  • Pehme köide
  • Hind: 48,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 142 pages, kõrgus x laius: 235x155 mm, 37 Illustrations, color; 7 Illustrations, black and white; XII, 142 p. 44 illus., 37 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 15182
  • Ilmumisaeg: 02-Mar-2025
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031832426
  • ISBN-13: 9783031832420
Teised raamatud teemal:
This book constitutes the refereed proceedings of the 6th International Workshop on Graphs in Biomedical Image Analysis, GRAIL 2024, held in conjunction with MICCAI 2024, in Marrakesh, Morocco, on October 6, 2024. The 12 full papers included in this volume were carefully reviewed and selected from 19 submissions.





The papers cover a wide range of topics, such as deep/machine learning on graphs; probabilistic graphical models for biomedical data analysis; signal processing on graphs for biomedical image analysis; explainable AI (XAI) methods in geometric deep learning; big data analysis with graphs; graphs for small data sets; semantic graph research in medicine; modeling and applications of graph symmetry/equivariance; or graph generative models.