Muutke küpsiste eelistusi

Guide to Process Based Modeling of Lakes and Coastal Seas 2nd ed. 2015 [Kõva köide]

  • Formaat: Hardback, 273 pages, kõrgus x laius: 242x170 mm, kaal: 752 g, 55 Illustrations, color; 60 Illustrations, black and white; XXXI, 273 p. 115 illus., 55 illus. in color., 1 Hardback
  • Ilmumisaeg: 10-Aug-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319179896
  • ISBN-13: 9783319179896
Teised raamatud teemal:
  • Kõva köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 273 pages, kõrgus x laius: 242x170 mm, kaal: 752 g, 55 Illustrations, color; 60 Illustrations, black and white; XXXI, 273 p. 115 illus., 55 illus. in color., 1 Hardback
  • Ilmumisaeg: 10-Aug-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319179896
  • ISBN-13: 9783319179896
Teised raamatud teemal:
This new edition of Guide to Process Based Modeling of Lakes and Coastal Seas brings the modeling up to date, taking into account multiple stressors acting on aquatic systems. The combination of acidification and increasing amounts of anoxic waters associated with eutrophication puts severe stress on the marine environment. The detection and attribution of anthropogenic changes in coastal seas are therefore crucial and transparent modeling tools are increasingly important. Modeling the marine CO2–O2 system makes systematic studies on climate change and eutrophication possible and is fundamental for understanding the Earth system. This second edition also includes new sections on detection and attribution and on modeling future changes, as well as improved exercises, updated software, and datasets.

This unique book will stimulate students and researchers to develop their modeling skills and make model codes and data transparent to other research groups. It uses the general equation solver PROBE to introduce process-oriented numerical modeling and to build understanding of the subject step by step. The equation solver has been used in many applications, particularly in Sweden and Finland with their numerous lakes, archipelago seas, fjords, and coastal zones. It has also been used for process studies in the Polar Seas and the Mediterranean Sea and the approach is suitable for applications in many other environmental applications.

Guide to Process Based Modeling of Lakes and Coastal Seas:

• is a unique teaching tool for systematic learning of aquatic modeling;
• approaches lake and ocean modeling from a new angle;
• introduces aquatic numerical modeling using a process-based approach;
• enables the thorough understanding of the physics and biogeochemistry
of lakes and coastal seas;
• provides software, datasets, and algorithms needed to reproduce all
calculations and results in the book;
• provides a number of creative and stimulating exercises with solutions;
• addresses the interaction between climate change and eutrophication
and is a good basis for learning Earth System Sciences.
1 Introduction
1(6)
2 Background Physics and Biogeochemistry
7(32)
2.1 Conservation Principles and Governing Equations
7(1)
2.2 Physical Aspects
8(2)
2.3 Simplifications
10(5)
2.4 Water Masses and Water Pools
15(2)
2.5 Strait Flows
17(2)
2.6 Turbulence
19(1)
2.7 Water and Salt Balances
20(1)
2.8 Heat Balance
21(2)
2.9 Nutrient Balance and Primary Production
23(5)
2.10 Acid-Base (pH) Balances
28(2)
2.11 Some Comments Related to Climate Change
30(9)
3 Physical Aspects
39(38)
3.1 Introduction
39(1)
3.2 Turbulence, Numerical Methods, and Programs
40(3)
3.3 Modeling the Ekman Ocean Boundary Layer
43(6)
3.3.1 Introduction
43(1)
3.3.2 Mathematical Formulation
44(3)
3.3.3 Details of Calculations
47(1)
3.3.4 Results
47(1)
3.3.5 Discussion
47(2)
3.4 Modeling Shallow and Deep Lakes
49(6)
3.4.1 Introduction
49(1)
3.4.2 Mathematical Formulation
50(1)
3.4.3 Details of Calculations
51(1)
3.4.4 Results
52(1)
3.4.5 Discussion
52(3)
3.5 Modeling the Ekman Ocean Boundary Layer Influenced by Temperature and Salinity
55(6)
3.5.1 Introduction
55(1)
3.5.2 Mathematical Formulation
55(2)
3.5.3 Details of Calculations
57(1)
3.5.4 Results
57(4)
3.5.5 Discussion
61(1)
3.6 Modeling an Ice-Covered Ocean Boundary Layer
61(6)
3.6.1 Introduction
61(1)
3.6.2 Mathematical Formulation
61(4)
3.6.3 Details of Calculations
65(1)
3.6.4 Results
65(1)
3.6.5 Discussion
66(1)
3.7 Modeling Turbulence in the Upper Layers of the Ocean
67(5)
3.7.1 Introduction
67(1)
3.7.2 Mathematical Formulation
67(2)
3.7.3 Details of Calculations
69(1)
3.7.4 Results
69(3)
3.7.5 Discussion
72(1)
3.8 Modeling Tidal Dynamics in the Ocean
72(5)
3.8.1 Introduction
72(1)
3.8.2 Mathematical Formulation
73(1)
3.8.3 Details of Calculations
74(1)
3.8.4 Results
74(1)
3.8.5 Discussion
75(2)
4 Biogeochemical Aspects
77(32)
4.1 Introduction
77(1)
4.2 Basic Equations, Stoichiometrics, and Unit Transformations
78(3)
4.3 Modeling the Dynamics of Oxygen
81(3)
4.3.1 Introduction
81(1)
4.3.2 Mathematical Formulation
81(1)
4.3.3 Details of Calculations
82(1)
4.3.4 Results
83(1)
4.3.5 Discussion
84(1)
4.4 Modeling Plankton Growth/Decay
84(4)
4.4.1 Introduction
84(1)
4.4.2 Mathematical Formulation
85(1)
4.4.3 Details of Calculations
86(1)
4.4.4 Results
86(2)
4.4.5 Discussion
88(1)
4.5 Modeling the Dynamics of Nutrients
88(4)
4.5.1 Introduction
88(1)
4.5.2 Mathematical Formulation
89(1)
4.5.3 Details of Calculations
90(1)
4.5.4 Results
90(2)
4.5.5 Discussion
92(1)
4.6 Modeling Dissolved Inorganic Carbon
92(7)
4.6.1 Introduction
92(3)
4.6.2 Mathematical Formulation
95(1)
4.6.3 Details of Calculations
96(1)
4.6.4 Results
97(1)
4.6.5 Discussion
98(1)
4.7 Modeling the Dynamics of Plankton, Oxygen, and Carbon
99(4)
4.7.1 Introduction
99(1)
4.7.2 Mathematical Formulation
99(2)
4.7.3 Details of Calculations
101(1)
4.7.4 Results
101(2)
4.7.5 Discussion
103(1)
4.8 Modeling the Dynamics of CO2 in a Redox Environment
103(6)
4.8.1 Introduction
103(1)
4.8.2 Mathematical Formulation
104(1)
4.8.3 Details of Calculations
105(1)
4.8.4 Results
105(1)
4.8.5 Discussion
106(3)
5 Construction of Nets of Sub-basins
109(30)
5.1 Modeling Two Coupled Sub-basins
109(4)
5.1.1 Introduction
109(1)
5.1.2 Mathematical Formulation
110(1)
5.1.3 Details of Calculations
111(1)
5.1.4 Results
111(1)
5.1.5 Discussion
112(1)
5.2 The PROBE-Baltic Model System: Physical Aspects
113(10)
5.2.1 Introduction
113(3)
5.2.2 Mathematical Formulation
116(2)
5.2.3 Details of Calculations
118(1)
5.2.4 Results
119(3)
5.2.5 Discussion
122(1)
5.3 The PROBE-Baltic Model System: Oxygen Aspects
123(4)
5.3.1 Introduction
123(1)
5.3.2 Mathematical Formulation
124(1)
5.3.3 Details of Calculations
124(1)
5.3.4 Results
125(2)
5.3.5 Discussion
127(1)
5.4 The PROBE-Baltic System: Biogeochemical Aspects
127(5)
5.4.1 Introduction
127(1)
5.4.2 Mathematical Formulation
128(2)
5.4.3 Details of Calculations
130(1)
5.4.4 Results
131(1)
5.4.5 Discussion
132(1)
5.5 Comments on Detection, Attribution, and Future Changes
132(7)
5.5.1 Introduction
132(2)
5.5.2 Recent Decline of Sea Ice in the Baltic Sea
134(1)
5.5.3 Recent Increase of Hypoxia in the Baltic Sea
135(2)
5.5.4 Modeling Future Changes
137(2)
6 Solutions Manual
139(44)
6.1 Solutions to Exercises in
Chapter 2
139(13)
6.2 Solutions to Exercises in
Chapter 3
152(12)
6.3 Solutions to Exercises in
Chapter 4
164(11)
6.4 Solutions to Exercises in
Chapter 5
175(8)
7 Summary and Conclusions
183(2)
Appendix A Introduction to FORTRAN 185(4)
Appendix B Nomenclature 189(6)
Appendix C Data and Programs Needed for the Exercises 195(2)
Appendix D The PROBE Manual 197(60)
Appendix E Reconstructions of Past Aquatic Conditions 257(6)
References 263(8)
Index 271