1 Foundations of Modeling |
|
1 | (14) |
|
1.1 Simulation Versus Analytic Results |
|
|
3 | (2) |
|
1.2 Stochastic Versus Deterministic Models |
|
|
5 | (1) |
|
1.3 Fundamentals of Modeling |
|
|
6 | (5) |
|
1.4 Validity and Purpose of Models |
|
|
11 | (3) |
|
|
14 | (1) |
2 Agent-Based Modeling |
|
15 | (64) |
|
2.1 Mathematical and Computational Modeling |
|
|
16 | (5) |
|
|
17 | (4) |
|
|
21 | (10) |
|
2.2.1 The Structure of ABMs |
|
|
23 | (2) |
|
|
25 | (2) |
|
2.2.3 Time-Driven Algorithms |
|
|
27 | (1) |
|
2.2.4 Event-Driven Models |
|
|
28 | (3) |
|
|
31 | (4) |
|
|
35 | (11) |
|
|
38 | (2) |
|
|
40 | (3) |
|
|
43 | (3) |
|
2.5 General Considerations When Analyzing a Model |
|
|
46 | (3) |
|
|
47 | (2) |
|
2.6 Case Study: The Evolution of Fimbriation |
|
|
49 | (29) |
|
|
49 | (3) |
|
2.6.2 A Model of Martian Mice |
|
|
52 | (26) |
|
|
78 | (1) |
3 ABMs Using Repast Simphony |
|
79 | (42) |
|
3.1 Mapping Agent Concepts to Object-Oriented Languages |
|
|
80 | (4) |
|
3.1.1 Hand-Coding an Agent in Java |
|
|
81 | (3) |
|
|
84 | (1) |
|
3.2.1 Repast Simphony and ReLogo |
|
|
84 | (1) |
|
3.3 The Game of Life Using ReLogo and Groovy |
|
|
85 | (11) |
|
3.3.1 Creating a New Model |
|
|
86 | (1) |
|
3.3.2 The UserPatch Class |
|
|
87 | (2) |
|
3.3.3 The UserObserver Class |
|
|
89 | (1) |
|
3.3.4 Visualizing the Model |
|
|
90 | (2) |
|
3.3.5 Implementing Cell State |
|
|
92 | (4) |
|
3.4 Malaria Model in Repast Using ReLogo |
|
|
96 | (22) |
|
|
97 | (1) |
|
3.4.2 Creating the Malaria Model |
|
|
97 | (1) |
|
3.4.3 A Basic Human Turtle Agent |
|
|
97 | (3) |
|
3.4.4 Model Parameterization |
|
|
100 | (1) |
|
3.4.5 The UserGlobalsAndPanelFactory Class |
|
|
101 | (1) |
|
3.4.6 The @ScheduledMethod Annotation |
|
|
102 | (2) |
|
|
104 | (3) |
|
3.4.8 parameters.xml and the SimBuilder Class |
|
|
107 | (2) |
|
|
109 | (2) |
|
3.4.10 Runtime Memory Configuration for Large Models |
|
|
111 | (1) |
|
3.4.11 Recognizing the Common Elements of the Agents |
|
|
112 | (1) |
|
3.4.12 Data Sets and Chart |
|
|
113 | (1) |
|
3.4.13 Outputting Data with Text Sinks |
|
|
114 | (2) |
|
3.4.14 Batch Runs with Varying Parameter Values |
|
|
116 | (2) |
|
3.4.15 Summary of Concepts Relating to the Malaria Model |
|
|
118 | (1) |
|
3.4.16 Going Further with Repast Simphony |
|
|
118 | (1) |
|
|
118 | (3) |
4 Differential Equations |
|
121 | (54) |
|
|
122 | (9) |
|
4.1.1 A Mathematical Example |
|
|
126 | (3) |
|
|
129 | (2) |
|
|
131 | (3) |
|
4.3 Differential Equations |
|
|
134 | (12) |
|
|
138 | (3) |
|
|
141 | (2) |
|
4.3.3 Bacterial Growth Revisited |
|
|
143 | (3) |
|
|
146 | (11) |
|
4.4.1 A Brief Note on Stability |
|
|
152 | (5) |
|
|
157 | (11) |
|
4.5.1 Michaelis—Menten and Hill Kinetics |
|
|
159 | (6) |
|
4.5.2 Modeling Gene Expression |
|
|
165 | (3) |
|
4.6 Case Study: Cherry and Adler's Bistable Switch |
|
|
168 | (5) |
|
|
173 | (1) |
|
|
174 | (1) |
5 Mathematical Tools |
|
175 | (32) |
|
5.1 A Word of Warning: Pitfalls of CAS |
|
|
175 | (2) |
|
5.2 Existing Tools and Types of System |
|
|
177 | (1) |
|
5.3 Maxima: Preliminaries |
|
|
178 | (2) |
|
5.4 Maxima: Simple Sample Sessions |
|
|
180 | (6) |
|
|
180 | (5) |
|
5.4.2 Saving and Recalling Sessions |
|
|
185 | (1) |
|
5.5 Maxima: Beyond Preliminaries |
|
|
186 | (14) |
|
|
187 | (2) |
|
5.5.2 Matrices and Eigenvalues |
|
|
189 | (2) |
|
5.5.3 Graphics and Plotting |
|
|
191 | (6) |
|
5.5.4 Integrating and Differentiating |
|
|
197 | (3) |
|
|
200 | (5) |
|
|
201 | (1) |
|
|
202 | (1) |
|
5.6.3 Cherry and Adler's Bistable Switch |
|
|
203 | (2) |
|
|
205 | (1) |
|
|
206 | (1) |
6 Other Stochastic Methods and Prism |
|
207 | (58) |
|
|
209 | (8) |
|
|
217 | (10) |
|
6.2.1 Weighted Configurations |
|
|
219 | (4) |
|
|
223 | (3) |
|
6.2.3 Codon Bias in Proteins |
|
|
226 | (1) |
|
|
227 | (10) |
|
6.3.1 Absorbing Markov Chains |
|
|
232 | (1) |
|
6.3.2 Continuous-Time Markov Chains |
|
|
233 | (2) |
|
6.3.3 An Example from Gene Activation |
|
|
235 | (2) |
|
6.4 Analyzing Markov Chains: Sample Paths |
|
|
237 | (2) |
|
6.5 Analyzing Markov Chains: Using PRISM |
|
|
239 | (17) |
|
6.5.1 The PRISM Modeling Language |
|
|
240 | (3) |
|
|
243 | (5) |
|
|
248 | (4) |
|
6.5.4 Simulation in PRISM |
|
|
252 | (2) |
|
|
254 | (2) |
|
|
256 | (8) |
|
|
256 | (4) |
|
6.6.2 Stochastic Versions of a Differential Equation |
|
|
260 | (3) |
|
6.6.3 Tricks for PRISM Models |
|
|
263 | (1) |
|
|
264 | (1) |
7 Simulating Biochemical Systems |
|
265 | (36) |
|
7.1 The Gillespie Algorithms |
|
|
265 | (10) |
|
7.1.1 Gillespie's Direct Method |
|
|
267 | (1) |
|
7.1.2 Gillespie's First Reaction Method |
|
|
267 | (1) |
|
7.1.3 Java Implementation of the Direct Method |
|
|
268 | (2) |
|
|
270 | (5) |
|
7.2 The Gibson—Bruck Algorithm |
|
|
275 | (6) |
|
7.2.1 The Dependency Graph |
|
|
276 | (1) |
|
7.2.2 The Indexed Priority Queue |
|
|
277 | (2) |
|
7.2.3 Updating the τ Values |
|
|
279 | (1) |
|
|
279 | (2) |
|
7.3 A Constant Time Method |
|
|
281 | (4) |
|
7.3.1 Selection Procedure |
|
|
281 | (2) |
|
|
283 | (2) |
|
7.4 Practical Implementation Considerations |
|
|
285 | (3) |
|
7.4.1 Data Structures—the Dependency Tree |
|
|
285 | (1) |
|
7.4.2 Programming Techniques—Tree Updating |
|
|
286 | (2) |
|
7.4.3 Runtime Environment |
|
|
288 | (1) |
|
7.5 Reaction Equation Systems for Biological Models |
|
|
288 | (2) |
|
|
290 | (1) |
|
7.7 Delayed Stochastic Models |
|
|
290 | (3) |
|
|
293 | (3) |
|
7.9 The Stochastic Genetic Networks Simulator |
|
|
296 | (2) |
|
|
298 | (1) |
|
|
298 | (3) |
8 Biochemical Models Beyond the Perfect Mixing Assumption |
|
301 | (24) |
|
8.1 Conceptual Differences Between Perfectly Mixed and Spatial Model Systems |
|
|
303 | (1) |
|
8.2 Spatial Modeling with Smoldyn |
|
|
304 | (1) |
|
8.3 Basic Concepts of Spatial Modeling |
|
|
305 | (7) |
|
8.4 Case Study: Change Detector I |
|
|
312 | (6) |
|
8.4.1 Simulations of the System |
|
|
316 | (2) |
|
8.5 Free-Change Detector II |
|
|
318 | (5) |
|
8.6 Alternatives to Smoldyn |
|
|
323 | (1) |
|
|
324 | (1) |
Appendix A: Reference Material |
|
325 | (10) |
Index |
|
335 | |