Preface |
|
v | |
|
|
1 | (6) |
|
|
5 | (2) |
|
Vectors, Matrices and Operations on Matrices |
|
|
7 | (50) |
|
|
8 | (2) |
|
Geometrical properties of vectors |
|
|
10 | (5) |
|
|
15 | (4) |
|
|
19 | (8) |
|
|
27 | (3) |
|
Eigenvectors and eigenvalues |
|
|
30 | (12) |
|
Statistical interpretation of matrices |
|
|
42 | (9) |
|
Geometrical interpretation of matrix products |
|
|
51 | (6) |
|
|
56 | (1) |
|
|
57 | (30) |
|
|
57 | (3) |
|
Measures of (dis)similarity |
|
|
60 | (9) |
|
|
60 | (1) |
|
Measures of (dis)similarity for continuous variables |
|
|
60 | (1) |
|
|
60 | (2) |
|
|
62 | (2) |
|
|
64 | (1) |
|
Measures of (dis)similarity for other variables |
|
|
65 | (1) |
|
|
65 | (1) |
|
|
66 | (1) |
|
|
67 | (1) |
|
|
68 | (1) |
|
|
69 | (18) |
|
|
69 | (7) |
|
|
76 | (3) |
|
|
79 | (3) |
|
|
82 | (1) |
|
Measures for clustering tendency |
|
|
82 | (1) |
|
|
83 | (1) |
|
|
84 | (1) |
|
|
85 | (2) |
|
Analysis of Measurement Tables |
|
|
87 | (74) |
|
|
87 | (1) |
|
Principal components analysis |
|
|
88 | (16) |
|
Singular vectors and singular values |
|
|
89 | (2) |
|
Eigenvectors and eigenvalues |
|
|
91 | (4) |
|
Latent vectors and latent values |
|
|
95 | (1) |
|
|
95 | (1) |
|
|
96 | (4) |
|
|
100 | (1) |
|
|
100 | (4) |
|
Geometrical interpretation |
|
|
104 | (11) |
|
|
104 | (4) |
|
|
108 | (4) |
|
|
112 | (1) |
|
|
113 | (2) |
|
|
115 | (19) |
|
|
118 | (1) |
|
|
119 | (3) |
|
|
122 | (1) |
|
|
123 | (2) |
|
|
125 | (5) |
|
|
130 | (4) |
|
|
134 | (6) |
|
Singular value decomposition |
|
|
134 | (4) |
|
|
138 | (2) |
|
|
140 | (6) |
|
|
142 | (1) |
|
|
143 | (1) |
|
|
144 | (2) |
|
Principal coordinates analysis |
|
|
146 | (3) |
|
Distances defined from data |
|
|
146 | (2) |
|
Distances derived from comparisons of pairs |
|
|
148 | (1) |
|
|
148 | (1) |
|
Non-linear principal components analysis |
|
|
149 | (4) |
|
Extensions of the data by higher order terms |
|
|
149 | (1) |
|
Non-linear transformations of the data |
|
|
149 | (1) |
|
|
150 | (3) |
|
Three-way principal components analysis |
|
|
153 | (3) |
|
|
153 | (1) |
|
|
154 | (2) |
|
|
156 | (1) |
|
|
156 | (5) |
|
|
158 | (3) |
|
Analysis of Contingency Tables |
|
|
161 | (46) |
|
|
161 | (5) |
|
|
166 | (1) |
|
|
167 | (3) |
|
|
168 | (1) |
|
|
168 | (1) |
|
|
169 | (1) |
|
|
170 | (5) |
|
|
175 | (7) |
|
|
175 | (1) |
|
|
176 | (1) |
|
|
177 | (5) |
|
Correspondence factor analysis |
|
|
182 | (19) |
|
|
182 | (1) |
|
Generalized singular value decomposition |
|
|
183 | (4) |
|
|
187 | (6) |
|
|
193 | (8) |
|
|
201 | (6) |
|
|
201 | (1) |
|
|
201 | (3) |
|
|
204 | (1) |
|
|
205 | (2) |
|
Supervised Pattern Recognition |
|
|
207 | (36) |
|
Supervised and unsupervised pattern recognition |
|
|
207 | (1) |
|
Derivation of classification rules |
|
|
208 | (28) |
|
Types of classification rules |
|
|
208 | (5) |
|
Canonical variates and linear discriminant analysis |
|
|
213 | (7) |
|
Quadratic discriminant analysis and related methods |
|
|
220 | (3) |
|
The k-nearest neighbour method |
|
|
223 | (2) |
|
|
225 | (2) |
|
|
227 | (1) |
|
UNEQ, SIMCA and related methods |
|
|
228 | (4) |
|
|
232 | (1) |
|
|
233 | (3) |
|
Feature selection and reduction |
|
|
236 | (2) |
|
Validation of classification rules |
|
|
238 | (5) |
|
|
239 | (4) |
|
Curve and Mixture Resolution by Factor Analysis and Related Techniques |
|
|
243 | (64) |
|
Abstract and true factors |
|
|
243 | (8) |
|
|
251 | (23) |
|
|
251 | (1) |
|
|
252 | (2) |
|
|
254 | (2) |
|
Factor rotation by target transformation factor analysis (TTFA) |
|
|
256 | (4) |
|
Curve resolution based methods |
|
|
260 | (1) |
|
Curve Resolution of two-factor systems |
|
|
260 | (7) |
|
Curve resolution of three-factor systems |
|
|
267 | (1) |
|
Factor rotation by iterative target transformation factor analysis (ITTFA) |
|
|
268 | (6) |
|
Evolutionary and local rank methods |
|
|
274 | (12) |
|
Evolving factor analysis (EFA) |
|
|
274 | (4) |
|
Fixed-size window evolving factor analysis (FSWEFA) |
|
|
278 | (2) |
|
Heuristic evolving latent projections (HELP) |
|
|
280 | (6) |
|
Pure column (or row) techniques |
|
|
286 | (12) |
|
The variance diagram (VARDIA) technique |
|
|
286 | (6) |
|
|
292 | (3) |
|
Orthogonal projection approach (OPA) |
|
|
295 | (3) |
|
Quantitative methods for factor analysis |
|
|
298 | (3) |
|
Generalized rank annihilation factor analysis (GRAFA) |
|
|
298 | (2) |
|
Residual bilinearization (RBL) |
|
|
300 | (1) |
|
|
301 | (1) |
|
Application of factor analysis for peak purity check in HPLC |
|
|
301 | (1) |
|
Guidance for the selection of a factor analysis method |
|
|
302 | (5) |
|
|
303 | (4) |
|
Relations between Measurement Tables |
|
|
307 | (42) |
|
|
307 | (3) |
|
|
310 | (7) |
|
|
310 | (4) |
|
|
314 | (1) |
|
|
314 | (3) |
|
Canonical correlation analysis |
|
|
317 | (6) |
|
|
317 | (3) |
|
|
320 | (1) |
|
|
321 | (2) |
|
Multivariate least squares regression |
|
|
323 | (1) |
|
|
323 | (1) |
|
|
324 | (1) |
|
|
324 | (1) |
|
|
324 | (5) |
|
|
324 | (1) |
|
|
325 | (1) |
|
|
326 | (1) |
|
|
326 | (3) |
|
Principal components regression |
|
|
329 | (2) |
|
|
329 | (1) |
|
|
329 | (1) |
|
|
330 | (1) |
|
Partial least squares regression |
|
|
331 | (11) |
|
|
336 | (1) |
|
|
337 | (3) |
|
Alternative PLS algorithms |
|
|
340 | (2) |
|
Continuum regression methods |
|
|
342 | (3) |
|
|
345 | (4) |
|
|
346 | (3) |
|
|
349 | (34) |
|
|
349 | (2) |
|
|
351 | (17) |
|
|
353 | (4) |
|
|
357 | (1) |
|
Principal Components Regression |
|
|
358 | (8) |
|
Partial least squares regression |
|
|
366 | (1) |
|
|
367 | (1) |
|
|
368 | (3) |
|
|
371 | (4) |
|
|
371 | (1) |
|
|
372 | (2) |
|
|
374 | (1) |
|
|
375 | (8) |
|
|
375 | (1) |
|
Transfer of calibration models |
|
|
376 | (2) |
|
|
378 | (1) |
|
|
379 | (4) |
|
Quantitative Structure-Activity Relationships (QSAR) |
|
|
383 | (38) |
|
Extrathermodynamic methods |
|
|
383 | (14) |
|
|
388 | (5) |
|
|
393 | (4) |
|
Principal components models |
|
|
397 | (11) |
|
Principal components analysis |
|
|
398 | (4) |
|
|
402 | (3) |
|
Correspondence factor analysis |
|
|
405 | (3) |
|
|
408 | (1) |
|
Linear discriminant analysis |
|
|
408 | (1) |
|
Canonical correlation analysis |
|
|
409 | (1) |
|
Partial least squares models |
|
|
409 | (7) |
|
|
409 | (2) |
|
Two-block PLS and indirect QSAR |
|
|
411 | (5) |
|
|
416 | (5) |
|
|
417 | (4) |
|
|
421 | (28) |
|
|
421 | (1) |
|
|
421 | (6) |
|
|
421 | (1) |
|
|
422 | (3) |
|
|
425 | (2) |
|
|
427 | (4) |
|
The analysis of Quantitative Descriptive Analysis profile data |
|
|
431 | (2) |
|
Comparison of two or more sensory data sets |
|
|
433 | (4) |
|
Linking sensory data to instrumental data |
|
|
437 | (3) |
|
Temporal aspects of perception |
|
|
440 | (4) |
|
|
444 | (5) |
|
|
446 | (3) |
|
|
449 | (58) |
|
|
449 | (2) |
|
|
451 | (42) |
|
One-compartment open model for intravenous administration |
|
|
455 | (6) |
|
Two-compartment catenary model for extravascular administration |
|
|
461 | (8) |
|
Two-compartment catenary model for extravascular administration with incomplete absorption |
|
|
469 | (1) |
|
One-compartment open model for continuous intravenous infusion |
|
|
470 | (3) |
|
One-compartment open model for repeated intravenous administration |
|
|
473 | (3) |
|
Two-compartment mammillary model for intravenous administration using Laplace transform |
|
|
476 | (11) |
|
|
487 | (1) |
|
|
487 | (3) |
|
|
490 | (3) |
|
Non-compartmental analysis |
|
|
493 | (7) |
|
Compartment models versus non-compartmental analysis |
|
|
500 | (2) |
|
Linearization of non-linear models |
|
|
502 | (5) |
|
|
505 | (2) |
|
|
507 | (68) |
|
|
507 | (2) |
|
Types of signal processing |
|
|
509 | (1) |
|
|
510 | (20) |
|
Time and frequency domain |
|
|
510 | (3) |
|
The Fourier transform of a continuous signal |
|
|
513 | (5) |
|
Derivation of the Fourier transform of a sine |
|
|
518 | (1) |
|
The discrete Fourier transformation |
|
|
519 | (1) |
|
Frequency range and resolution |
|
|
520 | (4) |
|
|
524 | (2) |
|
Zero filling and resolution |
|
|
526 | (1) |
|
|
527 | (1) |
|
|
528 | (1) |
|
Distributivity and scaling |
|
|
529 | (1) |
|
The fast Fourier transform |
|
|
530 | (1) |
|
|
530 | (5) |
|
|
535 | (18) |
|
Characterization of noise |
|
|
535 | (1) |
|
Signal enhancement in the time domain |
|
|
536 | (2) |
|
|
538 | (1) |
|
Smoothing by moving average |
|
|
538 | (4) |
|
|
542 | (2) |
|
|
544 | (3) |
|
Signal enhancement in the frequency domain |
|
|
547 | (2) |
|
Smoothing and filtering: a comparison |
|
|
549 | (1) |
|
The derivative of a signal |
|
|
550 | (1) |
|
Data compression by a Fourier transform |
|
|
550 | (3) |
|
Deconvolution by Fourier transform |
|
|
553 | (3) |
|
Other deconvolution methods |
|
|
556 | (6) |
|
|
557 | (1) |
|
|
558 | (4) |
|
|
562 | (13) |
|
|
562 | (2) |
|
The time-frequency Fourier transform |
|
|
564 | (2) |
|
|
566 | (7) |
|
|
573 | (2) |
|
|
575 | (30) |
|
|
575 | (2) |
|
Recursive regression of a straight line |
|
|
577 | (8) |
|
Recursive multicomponent analysis |
|
|
585 | (4) |
|
|
589 | (5) |
|
System equation for a kinetics experiment |
|
|
592 | (1) |
|
System equation of a calibration line with drift |
|
|
593 | (1) |
|
|
594 | (4) |
|
|
594 | (2) |
|
Kalman filter of a kinetics model |
|
|
596 | (2) |
|
Kalman filtering of a calibration line with drift |
|
|
598 | (1) |
|
Adaptive Kalman filtering |
|
|
598 | (3) |
|
Evaluation of the innovation |
|
|
599 | (1) |
|
The adaptive Kalman filter model |
|
|
599 | (2) |
|
|
601 | (4) |
|
|
603 | (2) |
|
Applications of Operations Research |
|
|
605 | (22) |
|
|
605 | (1) |
|
|
605 | (4) |
|
|
609 | (1) |
|
|
610 | (8) |
|
Application in analytical laboratory management |
|
|
617 | (1) |
|
Discrete event simulation |
|
|
618 | (3) |
|
|
621 | (6) |
|
|
625 | (2) |
|
Artificial Intelligence: Expert and Knowledge Based Systems |
|
|
627 | (22) |
|
Artificial intelligence and expert systems |
|
|
627 | (1) |
|
|
628 | (1) |
|
Structure of expert systems |
|
|
629 | (1) |
|
|
630 | (3) |
|
Rule-based knowledge representation |
|
|
631 | (1) |
|
Frame-based knowledge representation |
|
|
632 | (1) |
|
|
633 | (7) |
|
|
633 | (4) |
|
|
637 | (1) |
|
|
637 | (1) |
|
Object-oriented programming techniques |
|
|
638 | (1) |
|
Reasoning with uncertainty |
|
|
639 | (1) |
|
|
640 | (1) |
|
|
641 | (1) |
|
Development of an expert system |
|
|
642 | (3) |
|
Analysis of the application area |
|
|
642 | (1) |
|
Definition of knowledge domain, sources and tools |
|
|
643 | (1) |
|
|
643 | (1) |
|
|
644 | (1) |
|
Testing, validation and evaluation |
|
|
644 | (1) |
|
|
645 | (1) |
|
|
645 | (4) |
|
|
646 | (3) |
|
Artificial Neural Networks |
|
|
649 | (52) |
|
|
649 | (1) |
|
|
650 | (1) |
|
The basic unit---the neuron |
|
|
650 | (3) |
|
The linear learning machine and the perceptron network |
|
|
653 | (9) |
|
|
653 | (3) |
|
|
656 | (3) |
|
|
659 | (3) |
|
Multilayer feed forward (MLF) networks |
|
|
662 | (19) |
|
|
662 | (1) |
|
|
662 | (2) |
|
|
664 | (1) |
|
|
665 | (1) |
|
Role of the transfer function |
|
|
665 | (1) |
|
Transfer function of the output units |
|
|
666 | (1) |
|
Transfer function in the hidden units |
|
|
666 | (4) |
|
|
670 | (3) |
|
Learning rate and momentum term |
|
|
673 | (1) |
|
Training and testing an MLF network |
|
|
674 | (1) |
|
|
674 | (3) |
|
|
677 | (1) |
|
Determining the number of hidden units |
|
|
677 | (2) |
|
|
679 | (1) |
|
|
679 | (1) |
|
Variable selection and reduction |
|
|
679 | (1) |
|
Validation of MLF networks |
|
|
679 | (1) |
|
|
680 | (1) |
|
|
680 | (1) |
|
Radial basis function networks |
|
|
681 | (6) |
|
|
681 | (1) |
|
|
682 | (1) |
|
|
683 | (1) |
|
|
684 | (3) |
|
|
687 | (5) |
|
|
687 | (1) |
|
|
688 | (2) |
|
Interpretation of the Kohonen map |
|
|
690 | (1) |
|
|
691 | (1) |
|
Adaptive resonance theory networks |
|
|
692 | (9) |
|
|
692 | (1) |
|
|
693 | (1) |
|
|
693 | (1) |
|
|
694 | (1) |
|
|
695 | (6) |
Index |
|
701 | |