|
1 Mechanics and molecules |
|
|
1 | (33) |
|
|
1 | (3) |
|
1.2 Time-independent Schrodinger equation |
|
|
4 | (2) |
|
1.3 The Born-Oppenheimer model |
|
|
6 | (2) |
|
|
8 | (2) |
|
|
10 | (3) |
|
1.6 The determinantal method |
|
|
13 | (2) |
|
1.7 Physical interpretation |
|
|
15 | (2) |
|
1.8 Non-determinantal forms |
|
|
17 | (1) |
|
1.9 The variation principle |
|
|
18 | (3) |
|
|
21 | (2) |
|
|
23 | (2) |
|
1.B Standard Notation for Quantum Chemistry |
|
|
25 | (9) |
|
|
25 | (1) |
|
|
25 | (1) |
|
1.B.3 Many-electron wavefunctions |
|
|
26 | (1) |
|
|
27 | (1) |
|
1.B.5 Linear expansions for the spatial orbitals |
|
|
27 | (1) |
|
1.B.6 Primitive Gaussians |
|
|
28 | (1) |
|
1.B.7 Single determinant energy expression |
|
|
29 | (2) |
|
1.B.8 Notation for repulsion integrals |
|
|
31 | (1) |
|
1.B.9 Spatial orbital repulsion integrals |
|
|
32 | (1) |
|
1.B.10 Basis function repulsion integrals |
|
|
32 | (2) |
|
2 The Hartree-Fock Method |
|
|
34 | (36) |
|
|
34 | (1) |
|
2.2 The variational method |
|
|
35 | (1) |
|
2.3 The differential Hartree-Fock equation |
|
|
36 | (8) |
|
|
44 | (1) |
|
|
45 | (2) |
|
2.6 Physical interpretation |
|
|
47 | (1) |
|
2.7 Direct parametric minimisation |
|
|
48 | (1) |
|
|
49 | (1) |
|
2.A Single-determinant energy expression |
|
|
50 | (20) |
|
|
50 | (2) |
|
2.A.2 The normalisation integral |
|
|
52 | (4) |
|
|
56 | (4) |
|
|
60 | (5) |
|
|
65 | (5) |
|
3 The matrix SCF equations |
|
|
70 | (38) |
|
|
70 | (2) |
|
|
72 | (1) |
|
|
73 | (2) |
|
3.4 The energy expression |
|
|
75 | (1) |
|
3.5 The numerator: Hamiltonian mean value |
|
|
75 | (4) |
|
3.6 The denominator: normalisation condition |
|
|
79 | (1) |
|
3.7 The Hartree-Fock equation |
|
|
80 | (1) |
|
3.8 "Normalisation": the Lagrangian |
|
|
81 | (1) |
|
|
82 | (1) |
|
3.10 Some technical manipulations |
|
|
83 | (4) |
|
|
87 | (2) |
|
|
89 | (1) |
|
|
90 | (2) |
|
|
92 | (2) |
|
|
94 | (3) |
|
3.C Properties of the J and K matrices |
|
|
97 | (5) |
|
3.C.1 Mathematical properties |
|
|
97 | (2) |
|
3.C.2 Physical interpretation |
|
|
99 | (1) |
|
|
100 | (2) |
|
3.D An artifact of expansion |
|
|
102 | (2) |
|
3.D.4 Lowest state of a given symmetry |
|
|
102 | (2) |
|
3.E Single determinant: choice of orbitals |
|
|
104 | (4) |
|
3.E.5 Orthogonal invariance |
|
|
104 | (1) |
|
|
105 | (1) |
|
|
106 | (1) |
|
3.E.8 "Zeroth-order" perturbed orbitals |
|
|
107 | (1) |
|
4 A special case: closed shells |
|
|
108 | (6) |
|
|
108 | (1) |
|
4.2 Notation for the closed-shell case |
|
|
109 | (1) |
|
4.3 Closed-shell expansion |
|
|
109 | (1) |
|
4.4 The closed-shell "HF" equation |
|
|
110 | (3) |
|
|
113 | (1) |
|
5 Implementation of the closed-shell case |
|
|
114 | (71) |
|
|
114 | (1) |
|
5.2 Vectors, matrices and arrays |
|
|
115 | (6) |
|
5.3 The implementation: getting started |
|
|
121 | (16) |
|
5.4 The implementation: repulsion integral access |
|
|
137 | (10) |
|
5.5 Building a testbench: conventional SCF |
|
|
147 | (7) |
|
5.6 Another testbench: direct SCF |
|
|
154 | (8) |
|
|
162 | (1) |
|
|
162 | (2) |
|
5.A Jacobi diagonalisation |
|
|
164 | (7) |
|
|
164 | (1) |
|
|
165 | (1) |
|
|
166 | (1) |
|
|
167 | (3) |
|
5.A.5 Other diagonalisation methods |
|
|
170 | (1) |
|
|
171 | (6) |
|
|
171 | (2) |
|
5.B.7 Functions of a matrix |
|
|
173 | (1) |
|
|
174 | (3) |
|
5.C getint and data for H(2)O |
|
|
177 | (4) |
|
5.D Coding the standard index loops |
|
|
181 | (4) |
|
6 Improvements: tools and methods |
|
|
185 | (16) |
|
|
185 | (1) |
|
6.2 Versions: conditional compilation |
|
|
186 | (6) |
|
6.3 Improved diagonalisation |
|
|
192 | (3) |
|
|
195 | (2) |
|
6.5 Improving the formation of G(R) |
|
|
197 | (2) |
|
|
199 | (2) |
|
7 Molecular integrals: an introduction |
|
|
201 | (35) |
|
|
201 | (1) |
|
|
202 | (1) |
|
7.3 AOs and atom-centred-functions |
|
|
203 | (2) |
|
7.4 Multi-dimensional integral evaluation |
|
|
205 | (1) |
|
7.5 Molecular integrals over STOs |
|
|
206 | (9) |
|
7.6 Basis functions of convenience |
|
|
215 | (1) |
|
7.7 Gaussian basis functions |
|
|
216 | (18) |
|
7.8 The contraction technique |
|
|
234 | (2) |
|
8 Molecular integrals: implementation |
|
|
236 | (38) |
|
|
236 | (1) |
|
|
237 | (3) |
|
|
240 | (3) |
|
8.4 Overview; the general structure |
|
|
243 | (6) |
|
8.5 Complex code management: the WEB system |
|
|
249 | (7) |
|
|
256 | (10) |
|
8.7 Some comments on the WEB |
|
|
266 | (1) |
|
8.8 The full integral codes |
|
|
267 | (1) |
|
8.A Source for the WEB of fmch |
|
|
268 | (6) |
|
9 Repulsion integral storage |
|
|
274 | (11) |
|
|
274 | (1) |
|
|
274 | (2) |
|
9.3 Implementation: putint |
|
|
276 | (6) |
|
9.4 A partner for putint; getint |
|
|
282 | (2) |
|
|
284 | (1) |
|
|
285 | (18) |
|
|
285 | (1) |
|
10.2 Virtual orbitals in practice |
|
|
286 | (5) |
|
10.3 The virtual space in LCAO |
|
|
291 | (4) |
|
|
295 | (1) |
|
|
296 | (7) |
|
|
296 | (1) |
|
10.A.2 Perturbation theory |
|
|
296 | (5) |
|
10.A.3 Perturbation theory for matrix equations |
|
|
301 | (2) |
|
|
303 | (11) |
|
|
303 | (3) |
|
|
306 | (2) |
|
11.3 The Revision Control System: RCS |
|
|
308 | (2) |
|
11.A RCS: version control |
|
|
310 | (4) |
|
|
310 | (1) |
|
|
310 | (1) |
|
11.A.3 Getting started with RCS |
|
|
311 | (3) |
|
12 Open shells: implementing UHF |
|
|
314 | (53) |
|
|
314 | (1) |
|
12.2 Choice of constraints |
|
|
315 | (2) |
|
12.3 Organising the basis |
|
|
317 | (1) |
|
12.4 Integrals over the spin-basis |
|
|
318 | (2) |
|
|
320 | (1) |
|
|
321 | (5) |
|
|
326 | (3) |
|
12.8 Interpreting the MO coefficients |
|
|
329 | (3) |
|
|
332 | (1) |
|
12.10 Version 1 of the SCF code |
|
|
333 | (4) |
|
12.11 WEB output for function scf |
|
|
337 | (8) |
|
|
345 | (1) |
|
12.A WEB Source for the scf code |
|
|
346 | (5) |
|
12.B Blocking the Hartree-Fock matrix |
|
|
351 | (12) |
|
12.B.1 The block form of the HF matrix |
|
|
351 | (1) |
|
|
352 | (11) |
|
12.C The Aufbau principle |
|
|
363 | (4) |
|
|
363 | (1) |
|
12.C.4 The second variation |
|
|
363 | (2) |
|
12.C.5 Special case: a single excitation |
|
|
365 | (2) |
|
|
367 | (10) |
|
|
367 | (1) |
|
13.2 Densities and spin-densities |
|
|
368 | (1) |
|
13.3 Basis representations: charges |
|
|
369 | (3) |
|
13.4 Basis-function analysis |
|
|
372 | (2) |
|
|
374 | (1) |
|
13.6 Multi-determinant forms |
|
|
375 | (1) |
|
|
376 | (1) |
|
14 The general MO functional |
|
|
377 | (29) |
|
|
377 | (1) |
|
|
378 | (2) |
|
14.3 The variational method |
|
|
380 | (3) |
|
14.4 A single "Hartree-Fock" operator |
|
|
383 | (3) |
|
14.5 Non-orthogonal basis |
|
|
386 | (2) |
|
14.6 Choice of the arbitary matrices |
|
|
388 | (2) |
|
14.7 Implementation: stacks of matrices |
|
|
390 | (10) |
|
14.A Projection operators and SCF |
|
|
400 | (6) |
|
14.A.1 Introduction: optimum single determinant |
|
|
400 | (2) |
|
14.A.2 Alternative SCF conditions |
|
|
402 | (1) |
|
14.A.3 R matrices as projection operators |
|
|
403 | (3) |
|
15 Spin-restricted open shell |
|
|
406 | (30) |
|
|
406 | (1) |
|
|
407 | (1) |
|
|
408 | (1) |
|
15.4 A WEB for spin-restricted open shell |
|
|
409 | (27) |
|
16 Banana skins: unexpected disasters |
|
|
436 | (6) |
|
16.1 Symmetry restrictions |
|
|
437 | (1) |
|
|
438 | (1) |
|
|
439 | (2) |
|
|
441 | (1) |
|
|
442 | (25) |
|
|
442 | (1) |
|
17.2 Symmetry and the HF method |
|
|
443 | (2) |
|
17.3 Permutational symmetry of the basis |
|
|
445 | (5) |
|
|
450 | (16) |
|
17.5 Permutation symmetry: summary |
|
|
466 | (1) |
|
18 Symmetry orbital transformations |
|
|
467 | (10) |
|
|
467 | (3) |
|
18.2 Symmetry-adapted basis |
|
|
470 | (3) |
|
18.3 Generation of symmetry orbitals |
|
|
473 | (3) |
|
|
476 | (1) |
|
19 A symmetry-adapted SCF method |
|
|
477 | (24) |
|
|
477 | (3) |
|
|
480 | (9) |
|
19.3 Full implementation; linear combinations |
|
|
489 | (5) |
|
|
494 | (1) |
|
19.A Kronecker product notation |
|
|
495 | (6) |
|
19.A.1 Basis transformations |
|
|
495 | (1) |
|
19.A.2 Basis-product transformations |
|
|
495 | (2) |
|
19.A.3 Density matrix transformations |
|
|
497 | (1) |
|
19.A.4 Transformations in the HF matrix |
|
|
498 | (2) |
|
|
500 | (1) |
|
20 Linear multi-determinant methods |
|
|
501 | (29) |
|
20.1 Correlation and the Hartee-Fock model |
|
|
501 | (1) |
|
20.2 The configuration interaction method |
|
|
502 | (1) |
|
20.3 The valence bond method |
|
|
503 | (1) |
|
|
504 | (6) |
|
20.5 Symmetry-restricted CI |
|
|
510 | (2) |
|
|
512 | (1) |
|
20.7 Nesbet's method for large matrices |
|
|
513 | (6) |
|
|
519 | (5) |
|
|
524 | (1) |
|
20.A The "orthogonal VB" model |
|
|
525 | (2) |
|
|
527 | (3) |
|
21 The valence bond model |
|
|
530 | (15) |
|
21.1 Non-orthogonality in expansions |
|
|
530 | (1) |
|
21.2 Spins and spin functions |
|
|
531 | (4) |
|
21.3 Spin eigenfunctions and permutations |
|
|
535 | (4) |
|
|
539 | (5) |
|
|
544 | (1) |
|
|
545 | (17) |
|
22.1 Introduction: natural orbitals |
|
|
545 | (3) |
|
22.2 Paired-excitation MCSCF |
|
|
548 | (5) |
|
|
553 | (1) |
|
22.4 Partial Paired-Excitations; GVB |
|
|
553 | (3) |
|
|
556 | (5) |
|
|
561 | (1) |
|
23 Interpreting the McWeenyan |
|
|
562 | (5) |
|
|
562 | (1) |
|
|
563 | (2) |
|
|
565 | (1) |
|
|
566 | (1) |
|
|
567 | (24) |
|
|
567 | (2) |
|
24.2 Simple orthogonalization |
|
|
569 | (1) |
|
24.3 Transforming the Hartee-Fock equation |
|
|
570 | (4) |
|
|
574 | (2) |
|
24.5 Arbitariness in the pseudo-orbital |
|
|
576 | (3) |
|
24.6 Modelling atomic pseudopotentials |
|
|
579 | (2) |
|
24.7 Modelling atomic core potentials |
|
|
581 | (3) |
|
24.8 Several valence electrons |
|
|
584 | (4) |
|
24.9 Atomic cores in molecules |
|
|
588 | (1) |
|
|
589 | (2) |
|
25 Practical core potentials |
|
|
591 | (14) |
|
|
591 | (1) |
|
25.2 Forms for the core potentials |
|
|
591 | (4) |
|
25.3 Core potential integrals |
|
|
595 | (9) |
|
|
604 | (1) |
|
26 SCF perturbation theory |
|
|
605 | (16) |
|
|
605 | (1) |
|
26.2 Two forms for the HF equations |
|
|
606 | (3) |
|
26.3 Self-consistent perturbation theory |
|
|
609 | (1) |
|
|
610 | (8) |
|
|
618 | (3) |
|
27 Time-dependent perturbations: RPA |
|
|
621 | (12) |
|
|
621 | (1) |
|
27.2 Time-dependent Hartee-Fock theory |
|
|
621 | (2) |
|
27.3 Oscillatory time-dependent perturbations |
|
|
623 | (3) |
|
|
626 | (1) |
|
|
627 | (2) |
|
27.A "Random phase approximation" |
|
|
629 | (2) |
|
27.B Time-dependent variation principle |
|
|
631 | (2) |
|
28 Transitions and stability |
|
|
633 | (7) |
|
|
633 | (1) |
|
|
634 | (1) |
|
28.3 The transition frequencies |
|
|
635 | (1) |
|
28.4 Finite perturbations; oscillations |
|
|
636 | (2) |
|
28.5 Stability; the time-independent case |
|
|
638 | (1) |
|
|
639 | (1) |
|
29 Two-electron transformations |
|
|
640 | (31) |
|
29.1 Orbital transformations |
|
|
640 | (1) |
|
|
641 | (2) |
|
29.3 Transformation without sorting |
|
|
643 | (11) |
|
29.4 Transformations with sorting |
|
|
654 | (2) |
|
|
656 | (1) |
|
|
657 | (14) |
|
|
657 | (3) |
|
|
660 | (11) |
|
30 Geometry optimisation: derivatives |
|
|
671 | (15) |
|
|
671 | (1) |
|
30.2 Derivatives and perturbation theory |
|
|
672 | (2) |
|
30.3 Derivatives of variational solutions |
|
|
674 | (2) |
|
30.4 Parameter-dependent basis functions |
|
|
676 | (1) |
|
30.5 The derivative of the SCF energy |
|
|
677 | (4) |
|
30.6 Derivatives of molecular integrals |
|
|
681 | (1) |
|
30.7 Derivatives of non-variational energies |
|
|
682 | (2) |
|
|
684 | (1) |
|
|
684 | (2) |
|
31 The Semi-empirical approach |
|
|
686 | (7) |
|
|
686 | (1) |
|
31.2 Use of Coulomb's law |
|
|
687 | (2) |
|
|
689 | (1) |
|
31.4 Simulation or calibration? |
|
|
690 | (1) |
|
|
691 | (2) |
|
32 Density functional theory |
|
|
693 | (15) |
|
|
693 | (2) |
|
32.2 Hohenberg and Kohn's proofs |
|
|
695 | (5) |
|
32.3 Kohn-Sham equations: introduction |
|
|
700 | (3) |
|
|
703 | (2) |
|
32.5 Non-local operators in orbital theories |
|
|
705 | (3) |
|
33 Implementing the Kohn-Sham equations |
|
|
708 | (14) |
|
33.1 A precursor: The Hartree-Fock-Slater model |
|
|
708 | (2) |
|
33.2 Implementation of the Kohn-Sham method |
|
|
710 | (5) |
|
33.3 The kinetic energy density |
|
|
715 | (2) |
|
33.4 Gradients in the exchange-correlation energy |
|
|
717 | (1) |
|
33.5 Numerical integration of densities |
|
|
717 | (3) |
|
|
720 | (2) |
|
34 Semi-numerical methods |
|
|
722 | (10) |
|
34.1 Non-variational expansions |
|
|
722 | (2) |
|
34.2 The pseudospectral method |
|
|
724 | (5) |
|
34.3 The discrete variational method |
|
|
729 | (3) |
|
35 Additional reading and other material |
|
|
732 | |
|
|
732 | (2) |
|
35.2 Additional material by ftp |
|
|
734 | |