|
|
1 | (55) |
|
|
1 | (3) |
|
|
4 | (6) |
|
|
10 | (3) |
|
|
13 | (10) |
|
|
23 | (10) |
|
|
33 | (4) |
|
|
37 | (5) |
|
|
42 | (5) |
|
|
47 | (3) |
|
|
50 | (5) |
|
Image Enhancement Techniques |
|
|
55 | (30) |
|
|
55 | (1) |
|
Averaging of Multiple Images |
|
|
55 | (2) |
|
|
57 | (1) |
|
|
57 | (1) |
|
Iterative Conditional Local Averaging |
|
|
58 | (1) |
|
|
59 | (1) |
|
Max-Min Sharpening Transform |
|
|
60 | (2) |
|
Smoothing Binary Images by Association |
|
|
62 | (3) |
|
|
65 | (3) |
|
|
68 | (2) |
|
Local Area Contrast Enhancement |
|
|
70 | (1) |
|
|
71 | (1) |
|
|
72 | (1) |
|
|
73 | (8) |
|
|
81 | (1) |
|
|
82 | (2) |
|
|
84 | (1) |
|
Edge Detection and Boundary Finding Techniques |
|
|
85 | (52) |
|
|
85 | (1) |
|
|
85 | (2) |
|
Edge Enhancement by Discrete Differencing |
|
|
87 | (3) |
|
|
90 | (1) |
|
|
91 | (2) |
|
|
93 | (1) |
|
Wallis Logarithmic Edge Detection |
|
|
94 | (2) |
|
Frei-Chen Edge and Line Detection |
|
|
96 | (3) |
|
|
99 | (2) |
|
Directional Edge Detection |
|
|
101 | (2) |
|
Product of the Difference of Averages |
|
|
103 | (2) |
|
|
105 | (4) |
|
|
109 | (2) |
|
Marr-Hildreth Edge Detection |
|
|
111 | (3) |
|
Local Edge Detection in Three-Dimensional Images |
|
|
114 | (2) |
|
Hierarchical Edge Detection |
|
|
116 | (2) |
|
Edge Detection Using K-Forms |
|
|
118 | (4) |
|
|
122 | (6) |
|
Divide-and-Conquer Boundary Detection |
|
|
128 | (3) |
|
Edge Following as Dynamic Programming |
|
|
131 | (3) |
|
|
134 | (1) |
|
|
135 | (2) |
|
|
137 | (18) |
|
|
137 | (1) |
|
|
137 | (1) |
|
|
138 | (2) |
|
|
140 | (1) |
|
|
141 | (1) |
|
Threshold Selection Using Mean and Standard Deviation |
|
|
141 | (2) |
|
Threshold Selection by Maximizing Between-Class Variance |
|
|
143 | (6) |
|
Threshold Selection Using a Simple Image Statistic |
|
|
149 | (4) |
|
|
153 | (1) |
|
|
153 | (2) |
|
Thinning and Skeletonizing |
|
|
155 | (18) |
|
|
155 | (1) |
|
Pavlidis Thinning Algorithm |
|
|
155 | (2) |
|
Medial Axis Transform (MAT) |
|
|
157 | (2) |
|
|
159 | (4) |
|
|
163 | (3) |
|
Zhang-Suen Transform -- Modified to Preserve Homotopy |
|
|
166 | (2) |
|
Thinning Edge Magnitude Images |
|
|
168 | (3) |
|
|
171 | (1) |
|
|
171 | (2) |
|
Connected Component Algorithms |
|
|
173 | (14) |
|
|
173 | (1) |
|
Component Labeling for Binary Images |
|
|
173 | (3) |
|
Labeling Components with Sequential Labels |
|
|
176 | (2) |
|
Counting Connected Components by Shrinking |
|
|
178 | (3) |
|
Pruning of Connected Components |
|
|
181 | (1) |
|
|
182 | (1) |
|
|
183 | (2) |
|
|
185 | (2) |
|
Morphological Transforms and Techniques |
|
|
187 | (18) |
|
|
187 | (1) |
|
Basic Morphological Operations: Boolean Dilations and Erosions |
|
|
187 | (5) |
|
|
192 | (1) |
|
Salt and Pepper Noise Removal |
|
|
193 | (2) |
|
The Hit-and-Miss Transform |
|
|
195 | (2) |
|
Gray Value Dilations, Erosions, Openings, and Closings |
|
|
197 | (2) |
|
The Rolling Ball Algorithm |
|
|
199 | (2) |
|
|
201 | (1) |
|
|
202 | (3) |
|
|
205 | (38) |
|
|
205 | (1) |
|
|
205 | (3) |
|
Centering the Fourier Transform |
|
|
208 | (3) |
|
|
211 | (6) |
|
Discrete Cosine Transform |
|
|
217 | (4) |
|
|
221 | (4) |
|
The Haar Wavelet Transform |
|
|
225 | (8) |
|
Daubechies Wavelet Transforms |
|
|
233 | (6) |
|
|
239 | (1) |
|
|
240 | (3) |
|
Pattern Matching and Shape Detection |
|
|
243 | (32) |
|
|
243 | (1) |
|
Pattern Matching Using Correlation |
|
|
243 | (4) |
|
Pattern Matching in the Frequency Domain |
|
|
247 | (5) |
|
Rotation Invariant Pattern Matching |
|
|
252 | (3) |
|
Rotation and Scale Invariant Pattern Matching |
|
|
255 | (2) |
|
Line Detection Using the Hough Transform |
|
|
257 | (7) |
|
Detecting Ellipses Using the Hough Transform |
|
|
264 | (5) |
|
Generalized Hough Algorithm for Shape Detection |
|
|
269 | (3) |
|
|
272 | (1) |
|
|
273 | (2) |
|
Image Features and Descriptors |
|
|
275 | (34) |
|
|
275 | (1) |
|
|
275 | (1) |
|
|
276 | (2) |
|
Chain Code Extraction and Correlation |
|
|
278 | (5) |
|
|
283 | (3) |
|
|
286 | (3) |
|
|
289 | (3) |
|
Position, Orientation, and Symmetry |
|
|
292 | (2) |
|
Region Description Using Moments |
|
|
294 | (2) |
|
|
296 | (2) |
|
|
298 | (1) |
|
Texture Descriptors: Spatial Gray Level Dependence Statistics |
|
|
299 | (6) |
|
|
305 | (1) |
|
|
306 | (3) |
|
Geometric Image Transformations |
|
|
309 | (24) |
|
|
309 | (1) |
|
Image Reflection and Magnification |
|
|
309 | (2) |
|
Nearest Neighbor Image Rotation |
|
|
311 | (2) |
|
Image Rotation using Bilinear Interpolation |
|
|
313 | (3) |
|
Application of Image Rotation to the Computation of Directional Edge Templates |
|
|
316 | (4) |
|
General Affine Transforms |
|
|
320 | (2) |
|
|
322 | (5) |
|
Iterated Function Systems |
|
|
327 | (2) |
|
|
329 | (1) |
|
|
330 | (3) |
|
Neural Networks and Cellular Automata |
|
|
333 | (34) |
|
|
333 | (1) |
|
|
334 | (6) |
|
Bidirectional Associative Memory (BAM) |
|
|
340 | (5) |
|
|
345 | (4) |
|
Single-Layer Perceptron (SLP) |
|
|
349 | (3) |
|
Multilayer Perceptron (MLP) |
|
|
352 | (7) |
|
Cellular Automata and Life |
|
|
359 | (1) |
|
Solving Mazes Using Cellular Automata |
|
|
360 | (2) |
|
|
362 | (2) |
|
|
364 | (3) |
Appendix. The Image Algebra C++ Library |
|
367 | (46) |
Index |
|
413 | |