Muutke küpsiste eelistusi

Handbook of Microbial Metabolism of Amino Acids, The [Kõva köide]

Contributions by , Contributions by , Edited by (formerly Scottish Agricultural College, UK), Contributions by (University of Sao Paulo, Brazil), Contributions by (University of Southampton, UK), Contributions by (Universidad de Leon), Contributions by , Contributions by (Nagaoka University of Technology, Japan), Contributions by , Contributions by (COMSATS Institute of Information Technology, Pakistan)
  • Formaat: Hardback, 544 pages, kõrgus x laius x paksus: 244x172x35 mm, kaal: 1380 g
  • Ilmumisaeg: 24-Apr-2017
  • Kirjastus: CABI Publishing
  • ISBN-10: 1780647239
  • ISBN-13: 9781780647234
Teised raamatud teemal:
  • Formaat: Hardback, 544 pages, kõrgus x laius x paksus: 244x172x35 mm, kaal: 1380 g
  • Ilmumisaeg: 24-Apr-2017
  • Kirjastus: CABI Publishing
  • ISBN-10: 1780647239
  • ISBN-13: 9781780647234
Teised raamatud teemal:
This book collates and reviews recent advances in the microbial metabolism of amino acids, emphasizing diversity -- in terms of the range of organisms under investigation and their natural ecology -- and the unique features of amino acid metabolism in bacteria, yeasts, fungi, protozoa and nematodes. As well as studying the individual amino acids, including arginine, sulfur amino acids, branched-chain amino acids and aromatic amino acids, a number of themes are explored throughout the work. These include:

* Comparative issues between the metabolism of microbes and those of higher organisms, including plants and mammals
* Potential for drug targets in pathways of both biosynthesis and degradation of amino acids
* Relationship between amino acids or associated enzymes and virulence in parasitic pathogens
* Practical implications for food microbiology and pathogen characterization
* Future priorities relating to fundamental biochemistry of microrganisms, food quality and safety, human and animal health, plant pathology, drug design and ecology

As the volume of research into the metabolism of amino acids grows, this comprehensive study of the subject is a vital tool for researchers in the fields of biological, medical and veterinary sciences, including microbiology, biochemistry, genetics and pathology. This book is also essential for corporate organizations with active research and development programs, such as those in the pharmaceutical industry.

Muu info

Suitable for researchers of biological, medical and veterinary sciences, including microbiology, biochemistry, genetics and pathology.
Contributors xix
Preface: Concluding the Series xxiii
Glossary xxix
PART I GLUTAMATE
1 Structural and Functional Properties of Glutamate Dehydrogenases
1(14)
S. Brown
D.C. Simcock
1.1 Abstract
1(1)
1.2 Introduction
1(1)
1.3 Enzyme Structure
2(2)
1.3.1 Substrate and cofactor binding
2(1)
1.3.2 Tertiary and quaternary structure
3(1)
1.4 Enzyme Mechanism and Kinetics
4(3)
1.5 Genomics
7(1)
1.6 Metabolic Context
8(2)
1.7 Conclusions
10(5)
References
11(4)
2 Glutamate Decarboxylase in Bacteria
15(14)
F. Giovannercole
E. Pennacchietti
D. De Biase
2.1 Abstract
15(1)
2.2 Introduction
15(4)
2.2.1 Centrality of L-glutamate in bacterial metabolism
15(2)
2.2.2 Importance of L-glutamate in the acid stress response: the GDAR system
17(2)
2.3 Glutamate Decarboxylase (Gad) in Bacteria
19(4)
2.3.1 Escherichia coli Gad
19(1)
2.3.1.1 Structural studies
19(2)
2.3.1.2 Spectroscopic properties
21(1)
2.3.1.3 Gad signature
21(1)
2.3.2 Other bacterial Gads
22(1)
2.3.2.1 GadB from Clostridium perfringens
22(1)
2.3.2.2 GadB from Brucella microti
22(1)
2.3.2.3 GadB from lactic acid bacteria
22(1)
2.4 Use of Gad for γ-Aminobutyrate (GABA) Production: a Beneficial Molecule for our Society
23(1)
2.4.1 GABA in health and disease
23(1)
2.4.2 GABA as an alternative promising molecule for sustainable resources
24(1)
2.5 Conclusions
24(5)
References
25(4)
3 The Yeast γ-Aminobutyrate (GABA) Shunt
29(20)
R.D. Locy
3.1 Abstract
29(1)
3.2 Introduction
29(2)
3.3 Metabolism of GABA -- the GABA Shunt
31(3)
3.3.1 Glutamate decarboxylase
31(1)
3.3.2 GABA aminotransferase
32(1)
3.3.3 Succinate semialdehyde dehydrogenase
33(1)
3.4 Regulation of the Yeast GABA Shunt
34(5)
3.5 The Role of the Yeast GABA Shunt in Environmental Stress Responses
39(2)
3.6 Conclusions
41(8)
Acknowledgements
42(1)
References
42(7)
PART II LYSINE, ARGININE AND HYDROXYPROLINE
4 Lysine Biosynthesis in Microorganisms
49(21)
A.O. Hudson
M.A. Savka
F.G. Pearce
R.C.J. Dobson
4.1 Abstract
49(1)
4.2 Introduction
49(1)
4.2.1 The amino acid lysine
49(1)
4.2.2 The aspartate-derived amino acids
50(1)
4.3 Lysine Biosynthesis in Microorganisms
50(1)
4.3.1 The α-aminoadipate (AAA) pathway
51(1)
4.4 Lysine Biosynthesis in Bacteria: the Diaminopimelate (DAP) Pathways
51(9)
4.4.1 The DAP acyl pathways
52(6)
4.4.2 The meso-diaminopimelate (meso-DAP) dehydrogenase (Ddh) pathway
58(1)
4.4.3 L,L-Diaminopimelate aminotransferase (DapL) pathway: a novel variant of the DAP pathways
58(2)
4.5 Insights on Bridging the Metabolic Gap Between Tetrahydrodipicolinate (THDP) and L,L-DAP in Plants and Bacteria That Do Not Contain Orthologues of the DAP Pathway Enzymes DapD, DapC and DapE
60(1)
4.6 The Discovery of the L,L-Diaminopimelate Aminotransferase (DapL) Variant Pathway
60(2)
4.7 The Link Between Lysine and Bacterial Peptidoglycan (PG) Biosynthesis
62(1)
4.8 Conclusions
63(7)
Acknowledgements
64(1)
References
64(6)
5 Arginine Deiminase in Microorganisms
70(11)
F. Leroy
D. Charlier
5.1 Abstract
70(1)
5.2 Introduction
70(1)
5.3 General Mechanisms
71(4)
5.3.1 Overview of the pathway and its enzymes
71(1)
5.3.2 Genetic make-up
71(2)
5.3.3 Regulation of the pathway
73(2)
5.4 Ecological Situation and Examples
75(2)
5.4.1 Role in ecological adaptation
75(1)
5.4.2 Examples from (clinical) non-food ecosystems
75(1)
5.4.3 Examples from food ecosystems
76(1)
5.5 Conclusions
77(4)
Acknowledgements
77(1)
References
77(4)
6 Arginase and Microbial Pathogenesis in the Lungs
81(10)
M.J. Romero Lucas
R.W. Caldwell
D. Fulton
T. Chakraborty
R. Lucas
6.1 Abstract
81(1)
6.2 Introduction
81(1)
6.3 Importance of Exotoxins From G+ Bacteria in Permeability Oedema
82(1)
6.4 Importance of L-Arginine in Pneumococcal Physiological Fitness
83(1)
6.5 Role of L-Arginine in Alveolar Macrophage Polarization During Pneumococcal Pneumonia
83(2)
6.6 Opposing Actions of Arginase and Endothelial Nitric Oxide Synthase (eNOS) in Capillary Barrier Regulation
85(2)
6.7 Conclusions
87(4)
Acknowledgement
87(1)
References
87(4)
7 Arginine and Methionine as Precursors of Polyamines in Trypanosomatids
91(25)
Y. Perez-Pertejo
J.M. Moran
R. Balana Fence
7.1 Abstract
91(1)
7.2 Trypanosomatid-borne Diseases
91(2)
7.3 L-Methionine Metabolism
93(4)
7.3.1 L-Methionine and S-adenosyl-L-methionine (AdoMet) uptake
93(2)
7.3.2 AdoMet synthesis
95(1)
7.3.3 The transsulfuration pathway
95(1)
7.3.4 L-Methionine regeneration: the folate cycle
96(1)
7.3.5 The 5'-methylthioadenosine salvage pathway
96(1)
7.4 L-Arginine Metabolism
97(3)
7.4.1 L-Arginine uptake
97(2)
7.4.2 Arginase
99(1)
7.4.3 Phosphagen production
100(1)
7.5 Polyamine Metabolism
100(4)
7.5.1 Polyamine biosynthesis in mammals: the canonical pathway
100(1)
7.5.2 Polyamine metabolism in trypanosomatids
101(3)
7.6 Role of L-Arginine in Host-Parasite Interactions
104(2)
7.7 Polyamines as Potential Targets for Drug Development
106(2)
7.8 Conclusions
108(8)
Acknowledgements
109(1)
References
109(7)
8 Ornithine and Lysine Decarboxylation in Bacteria
116(12)
P.M. Lucas
8.1 Abstract
116(1)
8.2 Introduction
116(1)
8.3 Definitions
117(1)
8.3.1 L-Ornithine
117(1)
8.3.2 L-Lysine
117(1)
8.3.3 Putrescine
117(1)
8.3.4 Cadaverine
117(1)
8.4 The Ornithine Decarboxylase (ODC) and Lysine Decarboxylase (LDC) Systems
118(2)
8.4.1 Putrescine and cadaverine production systems
118(1)
8.4.2 The ODC system
118(1)
8.4.2.1 Genetic organization of the odc operon
118(1)
8.4.2.2 L-Ornithine decarboxylase
119(1)
8.4.2.3 The ornithine/putrescine exchanger
119(1)
8.4.3 The LDC system
119(1)
8.4.3.1 The cad operon of enterobacteria
119(1)
8.4.3.2 The LDC locus of the LAB strain Lactobacillus saerimneri 30a
119(1)
8.4.3.3 L-Lysine decarboxylase
120(1)
8.4.3.4 The lysine/cadaverine exchanger
120(1)
8.5 ODC-and LDC-Positive Bacteria
120(2)
8.5.1 Origin and diversity of bacteria
120(1)
8.5.2 Detection methods
121(1)
8.5.3 Lactic acid bacteria
121(1)
8.5.4 Enterobacteria
121(1)
8.5.5 Other bacteria
122(1)
8.6 Physiological Role of ODC and LDC
122(1)
8.6.1 Acid resistance and energy production
122(1)
8.6.2 Cad Genes and the virulence of pathogenic strains of Escherichia coli
122(1)
8.7 Food Safety Implications
123(1)
8.7.1 Origin of biogenic amines in food
123(1)
8.7.2 Toxicological effects of food-borne biogenic amines
123(1)
8.7.3 Control of biogenic amine formation in food
124(1)
8.8 Conclusions
124(4)
References
124(4)
9 The Role of Nitric Oxide Signalling in Yeast Stress Response and Cell Death
128(14)
P. Ludovico
B. Sampaio-Marques
N.S. Osorio
F. Rodrigues
9.1 Abstract
128(1)
9.2 Introduction
128(1)
9.3 Nitric Oxide Biosynthesis in Yeast
129(2)
9.4 Nitric Oxide Signalling
131(5)
9.4.1 The nitrosative stress response in yeast
132(2)
9.4.2 Nitric oxide signalling in the yeast stress response
134(2)
9.5 Nitric Oxide Signalling in Yeast Cell Death and Ageing
136(2)
9.6 Conclusions
138(4)
References
138(4)
10 Hydroxyproline Metabolism in Microorganisms
142(11)
S. Watanabe
10.1 Abstract
142(1)
10.3 Metabolic Pathway of trans-4-Hydroxy-L-Proline (T4LHyp) in Mammals
143(1)
10.4 Metabolic Pathway of T4LHyp in Bacteria
143(4)
10.4.1 Hydroxyproline 2-epimerase
144(1)
10.4.2 D-Hydroxyproline dehydrogenase
144(1)
10.4.3 Δ1-Pyrroline-4-hydroxy-2-carboxylate (Pyr4H2C) deaminase
145(2)
10.4.4 α-Ketoglutaric semialdehyde dehydrogenase
147(1)
10.5 Metabolic Pathway of trans-3-Hydroxy-L-Proline (T3LHyp)
147(2)
10.5.1 T3LHyp dehydratase
147(1)
10.5.2 Δ1-Pyrroline-2-carboxylate (Pyr2C) reductase
147(2)
10.6 Metabolic Pathway of cis-3-Hydroxy-L-Proline (C3LHyp)
149(1)
10.6.1 C3LHyp dehydratase
149(1)
10.6.2 Pyr2C reductase
149(1)
10.7 T4LHyp Betaine Metabolism
149(1)
10.8 Hydroxyproline Metabolism in Archaea
150(1)
10.9 Hydroxyproline Metabolism in Fungi
150(1)
10.10 Enzymatic Detection of Hydroxyproline
150(1)
10.11 Conclusions
151(2)
References
151(2)
PART III SERINE AND THREONINE
11 Cellular Responses to Serine in Yeast
153(17)
I.W. Dawes
G.D. Kornfeld
11.1 Abstract
153(1)
11.2 Introduction
153(3)
11.2.1 Metabolic roles of L-serine
153(2)
11.2.2 Role of L-serine in the cell walls of yeast and other fungi
155(1)
11.2.3 Role of L-serine in the heat-shock response
155(1)
11.3 Uptake and Synthesis of L-Serine and Glycine and the Central Role of One-Carbon Metabolism
156(3)
11.3.1 Uptake of L-serine and glycine
156(1)
11.3.2 Synthesis of L-serine and glycine
156(1)
11.3.3 Central role of one-carbon metabolism in synthesis and interconversion of glycine and L-serine
157(2)
11.4 Cellular Responses to Excess L-Serine and Glycine
159(3)
11.5 Regulation of L-Serine and Glycine Metabolism
162(3)
11.5.1 Control of L-serine and glycine uptake
162(1)
11.5.2 Regulation of L-serine and glycine metabolism
163(1)
11.5.3 Differences in L-serine metabolic networks and regulation between aerobic and anaerobic growth
164(1)
11.6 Conclusions
165(5)
Acknowledgements
165(1)
References
165(5)
12 Threonine Degradation in Hyperthermophilic Organisms
170(9)
Q. Bashir
N. Rashid
M. Akhtar
12.1 Abstract
170(1)
12.2 Introduction
170(1)
12.3 Threonine Degradation Pathways
171(2)
12.4 Threonine Degradation in Hyperthermophiles
173(3)
12.5 Conclusions
176(3)
References
176(3)
PART IV SULFUR AMINO ACIDS
13 Methionine Synthesis in Microbes
179(19)
F. Wencker
W. Ziebuhr
13.1 Abstract
179(1)
13.2 Introduction
179(2)
13.3 Bacterial Methionine Biosynthesis
181(2)
13.3.1 Acylation: activation of homoserine
181(1)
13.3.2 Sulfuration: from homoserine to homocysteine
181(1)
13.3.2.1 Direct sulfuration
182(1)
13.3.2.2 One-step synthesis
182(1)
13.3.2.3 Transsulfuration
182(1)
13.3.3 Methylation: from homocysteine to methionine
183(1)
13.4 Regulation of Methionine Biosynthesis
183(10)
13.4.1 Mechanisms of control of methionine biosynthesis
183(1)
13.4.1.1 Protein-mediated transcription control (transcription factors)
183(2)
13.4.1.2 RNA-mediated transcription control (riboswitches)
185(4)
13.4.2 Methionine metabolism and its control in selected bacterial species
189(1)
13.4.2.1 Escherichia coli
189(1)
13.4.2.2 Corynebacterium glutamicum
190(1)
13.4.2.3 Bacillus subtilis
190(2)
13.4.2.4 Staphylococcus aureus
192(1)
13.5 Methionine Biosynthesis as a Target for Novel Antibacterial Strategies
193(1)
13.5.1 Methionine biosynthesis enzyme and regulator protein inhibition
193(1)
13.5.2 Riboswitches as drug targets
193(1)
13.6 Conclusions
194(4)
References
194(4)
14 Regulation of Sulfur Amino Acid Metabolism in Fungi
198(13)
J.V. Paietta
14.1 Abstract
198(1)
14.2 Introduction
198(1)
14.3 Useful Sources of Sulfur
199(1)
14.4 Response to Sulfur Limitation Related to Acquisition
200(2)
14.4.1 Direct acquisition of cysteine and methionine
201(1)
14.5 Adjustments to Cellular Protein Sulfur Composition
202(1)
14.6 Sulfur Assimilation and the Synthesis of Cysteine and Methionine
202(1)
14.7 Components of the Sulfur Regulatory System
203(3)
14.7.1 The CYS3 regulator
203(1)
14.7.2 Sulfur controller regulators
204(1)
14.7.3 The sulfur signal and sensor
205(1)
14.8 Operation of the Sulfur Regulatory System
206(1)
14.9 Regulatory Comparison with Other Fungi
206(1)
14.10 Conclusions
207(4)
References
208(3)
15 Insights on O-Acetylserine Sulfhydrylase Structure, Function and Biopharmaceutical Applications
211(12)
B. Campanini
A. Mozzarelli
15.1 Abstract
211(1)
15.2 Introduction
211(2)
15.3 Structure
213(1)
15.4 Function and Regulation
214(2)
15.5 Moonlighting Activities
216(1)
15.6 Biopharmaceutical Applications
217(1)
15.7 Conclusions
218(5)
References
218(5)
PART V BRANCHED-CHAIN AMINO ACIDS
16 Metabolic Engineering of Corynebacterium glutamicum for L-Valine Production
223(11)
X. Wang
P.J. Quinn
16.1 Abstract
223(1)
16.2 Introduction
223(1)
16.3 Biosynthetic Pathway of L-Valine in C. glutamicum
224(1)
16.4 Regulation of L-Valine Biosynthesis in C. glutamicum
225(1)
16.4.1 Transcriptional repression
226(1)
16.4.2 Feedback inhibition
226(1)
16.4.3 Regulation of transport
226(1)
16.5 Metabolic Engineering of L-Valine Production in C. glutamicum
226(4)
16.5.1 Accumulating the key precursors in the biosynthetic pathway of L-valine
227(1)
16.5.2 Strengthening the biosynthetic pathway of L-valine by overexpressing the key genes
227(2)
16.5.3 Optimizing L-valine accumulation by chromosomal mutagenesis
229(1)
16.5.4 Balancing the cofactors to improve L-valine production
229(1)
16.6 Outlook
230(4)
Acknowledgements
230(1)
References
231(3)
17 Flavour Formation From Leucine by Lactic Acid Bacteria (LAB)
234(10)
M.I. Afzal
S. Delaunay
C. Cailliez-Grimal
17.1 Abstract
234(1)
17.2 Introduction
234(2)
17.3 Leucine Catabolic Pathways Among LAB
236(1)
17.4 Leucine Catabolic Activities and Their Effects on the Sensory Characteristics of Foods
237(4)
17.5 Conclusions
241(3)
References
241(3)
PART VI AROMATIC AMINO ACIDS AND HISTIDINE
18 Microbial Degradation of Phenolic Amino Acids
244(12)
D.E. Holmes
J. A. Smith
18.1 Abstract
244(1)
18.2 Introduction
244(1)
18.3 Phenylalanine Metabolism
245(1)
18.4 Tyrosine Metabolism
245(1)
18.5 Benzoyl-CoA Reduction Pathway
246(3)
18.6 Glutaryl-CoA Pathway
249(1)
18.7 Homology with Mesophilic Bacterial Proteins
249(2)
18.8 Industrial Applications
251(1)
18.9 Conclusions
251(5)
References
252(4)
19 The Biosynthesis of Tryptophan
256(11)
E.J. Parker
19.1 Abstract
256(1)
19.2 Introduction
256(1)
19.3 Overview of Tryptophan Biosynthesis
256(1)
19.4 Anthranilate Synthase
257(3)
19.5 Anthranilate Phosphoribosyltransferase
260(1)
19.6 Phosphoribosyl Anthranilate Isomerase
260(1)
19.7 Indole Glycerol Phosphate Synthase
261(1)
19.8 Tryptophan Synthase
262(2)
19.9 Conclusions
264(3)
References
264(3)
20 Tryptophan Biosynthesis in Bacteria: Drug Targets and Immunology
267(10)
J.S. Lott
20.1 Abstract
267(1)
20.2 Introduction
267(1)
20.3 The Tryptophan Biosynthetic Pathway
267(1)
20.4 Tryptophan Depletion is a Response of the Innate Immune System
268(1)
20.5 Mycobacterium tuberculosis is a Globally Significant Human Pathogen
269(1)
20.6 The Tryptophan Biosynthetic Pathway in Mycobacterium tuberculosis
270(1)
20.7 Tryptophan Biosynthesis is Essential for Host Colonization by M. tuberculosis
270(1)
20.8 The Role of Indoleamine 2,3-Dioxygenase 1 (IDO-1) in M. tuberculosis Infection
271(1)
20.9 Inhibitors of Tryptophan Biosynthesis in M. tuberculosis
271(2)
20.10 Conclusions and Future Prospects
273(4)
References
273(4)
21 The Kynurenine Pathway of Tryptophan Metabolism in Microorganisms
277(14)
R.S. Phillips
21.1 Abstract
277(1)
21.2 Introduction
277(2)
21.3 Distribution of the Kynurenine Pathway in Microorganisms
279(1)
21.4 Regulation of the Kynurenine Pathway in Microorganisms
280(1)
21.5 Tryptophan/Indoleamine Dioxygenase
280(1)
21.6 Kynurenine Formamidase
281(1)
21.7 Kynurenine Monooxygenase
281(2)
21.8 Kynureninase
283(1)
21.9 3-Hydroxyanthranilate 3,4-Dioxygenase
284(1)
21.10 2-Amino-3-carboxymuconate Semialdehyde Decarboxylase
284(1)
21.11 2-Aminomuconate Semialdehyde Dehydrogenase and 2-Aminomuconate Deaminase
284(2)
21.12 Roles of the Kynurenine Pathway in Microorganisms
286(2)
21.13 Conclusions
288(3)
References
288(3)
22 Histidine Degradation in Bacteria
291(13)
A.J. Nieuwkoop
R.A. Bender
22.1 Abstract
291(1)
22.2 The Histidine Utilization (Hut) Pathway
291(5)
22.2.1 Histidase
291(2)
22.2.2 Urocanase
293(1)
22.2.3 Imidazolone propionate hydrolase (IPase)
293(1)
22.2.4 Formiminoglutamate hydrolase (FIGase)
293(1)
22.2.5 Formiminoglutamate (FIG) deiminase
294(1)
22.2.6 Formylglutamate hydrolase (FGase)
294(1)
22.2.7 Histidine and urocanate permeases
294(1)
22.2.7.1 Urocanate permease in enteric bacteria
294(1)
22.2.7.2 Histidine and urocanate permeases in pseudomonads
294(2)
22.2.7.3 The Hut-specific permease of Bacillus subtilis
296(1)
22.3 Hut Operon Structure and Conservation
296(2)
22.3.1 The hut operons of enteric bacteria
296(1)
22.3.2 The hut operons of pseudomonads
296(1)
22.3.2.1 The hut operons of Pseudomonas putida
297(1)
22.3.2.2 The kid operons of P. fluorescens
297(1)
22.3.2.3 The hut operons of P. aeruginosa
297(1)
22.3.3 The hut operon of Bacillus subtilis
297(1)
22.4 Regulation of Hut Expression
298(1)
22.5 Theme and Variation Within the Hut Paradigm
298(2)
22.5.1 The hut system of Streptomyces spp.
298(1)
22.5.2 The hut system of Ralstonia eutropha
299(1)
22.5.3 The hut system of Caulobacter crescentus
299(1)
22.6 Unanswered Questions
300(4)
References
300(4)
23 The Histidine Phosphatase Superfamily in Pathogenic Bacteria
304(11)
O.O. Coker
P. Palittapongarnpim
23.1 Abstract
304(1)
23.2 Introduction
304(1)
23.3 The Histidine Phosphatase Superfamily
305(4)
23.3.1 Definition and general properties
305(1)
23.3.2 Subgrouping
305(2)
23.3.3 Structure and mechanism
307(2)
23.4 Functions of the Histidine Phosphatase Superfamily in Bacteria
309(2)
23.4.1 Biosynthetic pathways
309(1)
23.4.2 Scavenging functions
310(1)
23.4.3 Signalling
310(1)
23.4.4 Pathogenesis
310(1)
23.5 Role of Histidine Acid Phosphatase Superfamily Proteins in the Pathogenicity of Mycobacterium tuberculosis
311(1)
23.6 Conclusions
312(3)
References
312(3)
PART VII D-AMINO ACIDS
24 Functions and Metabolism of D-Amino Acids in Microorganisms
315(17)
S. Takahashi
K. Abe
K. Shibata
Y. Kera
24.1 Abstract
315(1)
24.2 Introduction
315(1)
24.3 Functions of D-Amino Acids
316(3)
24.3.1 Functions of D-amino acids in prokaryotic microorganisms
316(2)
24.3.2 Functions of D-amino acids in eukaryotic microorganisms
318(1)
24.4 D-Amino Acid Synthesis
319(4)
24.4.1 PLP-dependent amino acid racemase
319(1)
24.4.1.1 Alanine racemase
319(1)
24.4.1.2 Serine racemase
319(1)
24.4.1.3 Arginine/lysine racemase
320(1)
24.4.1.4 Broad substrate specificity amino acid racemase
320(1)
24.4.2 PLP-Independent amino acid racemase
321(1)
24.4.2.1 Aspartate racemase
321(1)
24.4.2.2 Glutamate racemase
321(1)
24.4.2.3 Proline racemase
322(1)
24.4.2.4 Phenylalanine racemase (gramicidin S synthetase A)
322(1)
24.4.3 D-Amino acid aminotransferase
322(1)
24.4.4 Enzyme side reactions
323(1)
24.5 D-Amino Acid Degradation
323(3)
24.5.1 D-Amino acid oxidase
323(1)
24.5.2 D-Aspartate oxidase
324(1)
24.5.3 D-Amino acid dehydrogenase
324(1)
24.5.4 D-Serine/threonine dehydratase
325(1)
24.5.5 D-Proline reductase
326(1)
24.5.6 D-Threonine aldolase
326(1)
24.6 Conclusions
326(6)
References
326(6)
25 Pathways of Utilization of D-Amino Acids in Higher Organisms
332(20)
J.P.F. D'Mello
25.1 Abstract
332(1)
25.2 Introduction
333(1)
25.3 Occurrence of D-Amino Acids in Higher Organisms
334(1)
25.3.1 Functions
334(1)
25.4 Endogenous Synthesis and Degradation of D-Amino Acids in Higher Organisms
334(4)
25.4.1 Amino acid racemases
336(1)
25.4.2 D-Amino acid oxidases
337(1)
25.4.3 Homeostasis
337(1)
25.5 Food Composition and Safety
338(2)
25.6 Feeding and Nutrition
340(4)
25.6.1 Case study: D-amino acid kinetics in the ruminant animal
342(2)
25.7 Toxicology
344(1)
25.8 Clinical Applications: Emerging Potential
345(1)
25.9 Conclusions
345(7)
References
346(6)
PART VIII ECOLOGY
26 Rhizobial Amino Acid Metabolism: Polyamine Biosynthesis and Functions
352(19)
M.F. Dunn
26.1 Abstract
352(1)
26.2 Introduction and Scope
352(1)
26.3 Polyamine Chemistry, Detection and Analysis
353(1)
26.4 Physiological Functions of Polyamines in Non-rhizobia
353(1)
26.5 Synthesis and Degradation of Polyamine Precursors in Rhizobia
354(3)
26.5.1 Lysine
355(1)
26.5.2 Ornithine and arginine
355(2)
26.6 Synthesis and Transport of Polyamines in Rhizobia
357(4)
26.6.1 Polyamines produced by rhizobia under free-living and symbiotic conditions
357(1)
26.6.2 Polyamine biosynthesis in rhizobia
358(1)
26.6.3 Polyamine transport in rhizobia
359(1)
26.6.4 Polyamine degradation in rhizobia
359(2)
26.7 Functions of Polyamines in Free-Living Rhizobia
361(4)
26.7.1 Requirement of polyamines for growth
361(1)
26.7.2 Polyamines and motility
361(1)
26.7.3 Polyamines and biofilm formation
361(2)
26.7.4 Polyamines in abiotic stress resistance
363(2)
26.8 Functions of Polyamines in Symbiotically-Associated Rhizobia
365(1)
26.8.1 Influence of polyamines on nodulation and nitrogen fixation
365(1)
26.8.2 Influence of polyamines on symbiosis under stress conditions
365(1)
26.9 Concluding Remarks
365(6)
Acknowledgements
366(1)
References
366(5)
27 Working Together: Amino Acid Biosynthesis in Endosymbiont-harbouring Trypanosomatidae
371(13)
J.M.P. Alves
27.1 Abstract
371(1)
27.2 Background
371(1)
27.3 In silico Metabolic Reconstruction
372(1)
27.4 Essential Amino Acid Biosynthesis
373(5)
27.4.1 Arginine and ornithine
373(2)
27.4.2 Cysteine and methionine
375(1)
27.4.3 Histidine
376(1)
27.4.4 Isoleucine, leucine and valine
376(1)
27.4.5 Lysine
377(1)
27.4.6 Phenylalanine, tyrosine and tryptophan
377(1)
27.4.7 Threonine
377(1)
27.5 Non-essential Amino Acid Biosynthesis
378(2)
27.5.1 Glycine and serine
378(1)
27.5.2 Alanine, aspartate and asparagine
378(1)
27.5.3 Proline
379(1)
27.5.4 Glutamine and glutamate
379(1)
27.6 Conclusions
380(4)
References
381(3)
28 Amino Acid Metabolism in Helminths
384(14)
H.V. Simpson
S. Umair
28.1 Abstract
384(1)
28.2 Introduction
384(1)
28.3 Overview
384(1)
28.4 Glutamate
385(1)
28.4.1 Glutamate dehydrogenase
386(1)
28.4.2 Glutamine synthetase (GS)-glutamate synthase (GOGAT)
386(1)
28.4.3 Glutaminase
386(1)
28.4.4 GABA (γ-aminobutyrate) shunt
386(1)
28.5 Proline
386(1)
28.6 Arginine
387(1)
28.6.1 Arginase
387(1)
28.6.2 Ornithine urea cycle
387(1)
28.6.3 Nitric oxide synthase (NOS)
387(1)
28.6.4 Agmatine
387(1)
28.6.5 Polyamines
387(1)
28.6.6 Arginine kinase
388(1)
28.7 Glycine, Sarcosine, Serine and Threonine
388(1)
28.7.1 Glycine
388(1)
28.7.2 Sarcosine
388(1)
28.7.3 Serine
388(1)
28.7.4 Threonine
389(1)
28.8 Methionine and Cysteine
389(1)
28.8.1 Glutathione
389(1)
28.9 Leucine, Isoleucine and Valine
389(1)
28.10 Tyrosine, Phenylalanine and Tryptophan
389(1)
28.10.1 Tyrosinase
390(1)
28.10.2 Chorismate mutase (CM)
390(1)
28.11 Alanine
390(1)
28.12 Aspartate and Asparagine
390(1)
28.13 Lysine
391(1)
28.14 Conclusions
391(7)
References
391(7)
29 Microbial Degradation of Amino Acids in Anoxic Environments
398(20)
A. Parthasarathy
N.P. Chowdhury
29.1 Abstract
398(1)
29.2 Introduction
398(2)
29.3 Unusual Reactions in Amino Acid Fermentation
400(1)
29.4 The 2-Hydroxyacid Pathway
400(3)
29.4.1 Pathway and mechanism of dehydration
400(1)
29.4.2 Activation of 2-hydroxyacyl-CoA dehydratase (2-HADH)
401(2)
29.4.3 Bioenergetics of the 2-hydroxyacid pathways
403(1)
29.4.4 Reaction constants of 2-HADH and physiological implications
403(1)
29.5 The 4-Hydroxybutyrate and 5-Hydroxyvalerate Pathways: Flavin-mediated Elimination of the Terminal Hydroxy Groups
403(1)
29.5.1 The 4-hydroxybutyrate pathway
403(1)
29.5.2 The 5-hydroxyvalerate pathway
404(1)
29.6 Pathways via Carbon Skeleton Rearrangements
404(3)
29.6.1 Lysine fermentation via 3,5-diaminohexanoate
404(2)
29.6.2 The 3-methylaspartate (mesaconate) pathway
406(1)
29.6.2.1 Glutamate mutase
407(1)
29.7 Energy Conservation in Anaerobes and Electron Bifurcation
407(3)
29.7.1 Anaerobic energy metabolism
407(1)
29.7.2 Ferredoxins and anaerobic metabolism
408(1)
29.7.3 Flavin-based electron bifurcation (FBEB)
408(1)
29.7.4 A Membrane-Associated Rhodobacter Nitrogen Fixation Protein (Rnf)-Complex For Ferredoxin Reoxidation and Energy Conservation
409(1)
29.8 Biotechnological Applications of Amino Acid Fermentation
410(1)
29.9 Medical and Environmental Aspects of Amino Acid Fermentation
411(1)
29.9.1 Medical aspects
411(1)
29.9.2 Environmental aspects
411(1)
29.10 Conclusions
412(6)
Acknowledgements
412(1)
References
412(6)
30 Utilization of N-Methylated Amino Acids by Bacteria
418(15)
M.J. Wargo
30.1 Abstract
418(1)
30.2 Introduction
418(1)
30.3 Glycine Betaine and Its Metabolites
419(3)
30.3.1 Sources
419(1)
30.3.2 Roles in pathogenesis, symbiosis and osmoprotection
420(1)
30.3.3 Biosynthesis
421(1)
30.3.4 Metabolism
421(1)
30.4 N-Methylated Prolines
422(2)
30.4.1 Sources
422(1)
30.4.2 Roles in symbiosis and osmoprotection
423(1)
30.4.3 Biosynthesis
423(1)
30.4.4 Catabolism
423(1)
30.5 Histidine Betaine and Its Metabolites
424(1)
30.5.1 Sources
424(1)
30.5.2 Role in bacterial biology
425(1)
30.5.3 Biosynthesis
425(1)
30.5.4 Catabolism
425(1)
30.6 N-Methylated Tryptophan
425(1)
30.7 N-Methylated Tyrosine
426(1)
30.8 Conclusions
426(7)
References
426(7)
31 Biofilm Formation: Amino Acid Biomarkers in Candida Albicans
433(11)
Y. Cao
Z. Liao
31.1 Abstract
433(1)
31.2 Introduction
433(2)
31.3 The Adherence Phase
435(2)
31.4 The Initiation Phase
437(1)
31.5 The Maturation and Dispersal Phase
438(2)
31.6 Amino Acids and the Tricarboxylic Acid (TCA) Cycle
440(1)
31.7 Drug Therapies and C. albicans Biofilms
440(1)
31.8 Conclusions
441(3)
References
442(2)
PART IX CONCLUSIONS
32 Recent Advances Underpinning Innovative Strategies for the Future
444(12)
J.P.F. D'Mello
32.1 Abstract
444(2)
32.2 Overview
446(2)
32.3 Unlocking Practical Value
448(2)
32.4 Glutamate
450(1)
32.5 Arginine
450(1)
32.6 Serine
450(1)
32.7 Methionine
451(1)
32.8 Branched-chain Amino Acids
451(3)
32.9 Aromatic Amino Acids
454(1)
32.9.1 Phenylalanine and tyrosine
454(1)
32.9.2 Tryptophan
455(1)
32.10 Secondary Metabolism
455(1)
32.11 Osmoprotection
456(12)
32.12 Host-microbe Interactions
457(3)
32.12.1 Symbiosis
457(1)
32.12.1.1 Microbial metabolism of non-protein amino acids: contrasting observations
457(1)
32.12.1.2 The host-pathogen axis
458(2)
32.13 Antimicrobial Chemotherapy: Potential Targets in Pathways of Amino Acid Metabolism
460(3)
32.13.1 Drug/fungicide resistance
463(1)
32.14 Summary of Outcomes
463(4)
32.14.1 Food quality
464(1)
32.14.2 Food safety
464(1)
32.14.3 Enzyme and biochemical characterization of microorganisms
464(1)
32.14.4 Metabolic pathways
465(1)
32.14.5 Antagonisms and synergism
465(1)
32.14.6 Amino acid metabolism and disease
466(1)
32.14.7 Pathogenicity and virulence
466(1)
32.14.8 Drug targets
467(1)
32.15 Outlook
467(1)
32.15.1 Constraints
467(1)
32.15.2 Opportunities
468(1)
References 468(11)
Index 479
J.P.F. D'Mello is a double graduate of the University of Nottingham, obtaining a BSc Honours in 1964 and a PhD in 1967, both in the Department of Applied Biochemistry. He began work at the Edinburgh School of Agriculture in 1968, lecturing to students and commencing research with grants from the Agricultural Research Council, Tropical Products Institute (ODA), BP and ICI. He has supervised a number of Honours, MSc and PhD students during his years at Edinburgh, published extensively in refereed journals, and took charge of the Environmental Protection and Management degree course for four years until retirement. Since retiring, he has edited 5 books for CABI, with A Handbook of Environmental Toxicology: Human Disorders and Ecotoxicology published in December 2019 and the authored text Introduction to Environmental Toxicology publishing in late 2020.