Muutke küpsiste eelistusi

Handbook of Nature-Inspired Optimization Algorithms: The State of the Art: Volume I: Solving Single Objective Bound-Constrained Real-Parameter Numerical Optimization Problems 2022 ed. [Pehme köide]

  • Formaat: Paperback / softback, 279 pages, kõrgus x laius: 235x155 mm, kaal: 450 g, 73 Illustrations, color; 21 Illustrations, black and white; X, 279 p. 94 illus., 73 illus. in color., 1 Paperback / softback
  • Sari: Studies in Systems, Decision and Control 212
  • Ilmumisaeg: 02-Sep-2023
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031075145
  • ISBN-13: 9783031075148
Teised raamatud teemal:
  • Pehme köide
  • Hind: 141,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 166,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 279 pages, kõrgus x laius: 235x155 mm, kaal: 450 g, 73 Illustrations, color; 21 Illustrations, black and white; X, 279 p. 94 illus., 73 illus. in color., 1 Paperback / softback
  • Sari: Studies in Systems, Decision and Control 212
  • Ilmumisaeg: 02-Sep-2023
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031075145
  • ISBN-13: 9783031075148
Teised raamatud teemal:
The introduction of nature-inspired optimization algorithms (NIOAs), over the past three decades, helped solve nonlinear, high-dimensional, and complex computational optimization problems. NIOAs have been originally developed to overcome the challenges of global optimization problems such as nonlinearity, non-convexity, non-continuity, non-differentiability, and/or multimodality which traditional numerical optimization techniques had difficulties solving.





The main objective for this book is to make available a self-contained collection of modern research addressing the general bound-constrained optimization problems in many real-world applications using nature-inspired optimization algorithms. This book is suitable for a graduate class on optimization, but will also be useful for interested senior students working on their research projects.
Chaotic-SCA Salp Swarm Algorithm Enhanced with Opposition Based
Learning:  Application to Decrease Carbon Footprint in Patient Flow.- Design
and Performance Evaluation of Objective Functions Based on Various Measures
of Fuzzy Entropies for Image Segmentation using Grey Wolf Optimization.-
Improved Artificial Bee Colony Algorithm with Adaptive Pursuit Based Strategy
Selection.- Beetle Antennae Search Algorithm for the Motion Planning of
Industrial Manipulator.- Solving Optimal Power Flow with Considering
Placement of TCSC and FACTS Cost Using Cuckoo Search Algorithm.