Preface to the Second Edition |
|
xv | |
Preface to the First Edition |
|
xix | |
|
PART I THE MULTIPLE LINEAR REGRESSION MODEL |
|
|
|
1 Multiple Linear Regression |
|
|
3 | (20) |
|
|
3 | (1) |
|
1.2 Concepts and Background Material |
|
|
4 | (5) |
|
1.2.1 The Linear Regression Model |
|
|
4 | (1) |
|
1.2.2 Estimation Using Least Squares |
|
|
5 | (3) |
|
|
8 | (1) |
|
|
9 | (6) |
|
1.3.1 Interpreting Regression Coefficients |
|
|
9 | (1) |
|
1.3.2 Measuring the Strength of the Regression Relationship |
|
|
10 | (2) |
|
1.3.3 Hypothesis Tests and Confidence Intervals for β |
|
|
12 | (1) |
|
1.3.4 Fitted Values and Predictions |
|
|
13 | (1) |
|
1.3.5 Checking Assumptions Using Residual Plots |
|
|
14 | (1) |
|
1.4 Example --- Estimating Home Prices |
|
|
15 | (4) |
|
|
19 | (4) |
|
|
23 | (30) |
|
|
23 | (1) |
|
2.2 Concepts and Background Material |
|
|
24 | (5) |
|
2.2.1 Using Hypothesis Tests to Compare Models |
|
|
24 | (2) |
|
|
26 | (3) |
|
|
29 | (9) |
|
|
29 | (2) |
|
2.3.2 Example --- Estimating Home Prices |
|
|
31 | (7) |
|
2.4 Indicator Variables and Modeling Interactions |
|
|
38 | (8) |
|
2.4.1 Example --- Electronic Voting and the 2004 Presidential Election |
|
|
40 | (6) |
|
|
46 | (7) |
|
PART II ADDRESSING VIOLATIONS OF ASSUMPTIONS |
|
|
|
3 Diagnostics For Unusual Observations |
|
|
53 | (14) |
|
|
53 | (1) |
|
3.2 Concepts and Background Material |
|
|
54 | (2) |
|
|
56 | (4) |
|
3.3.1 Residuals and Outliers |
|
|
56 | (1) |
|
|
57 | (1) |
|
3.3.3 Influential Points and Cook's Distance |
|
|
58 | (2) |
|
3.4 Example --- Estimating Home Prices (continued) |
|
|
60 | (3) |
|
|
63 | (4) |
|
4 Transformations And Linearizable Models |
|
|
67 | (12) |
|
|
67 | (2) |
|
4.2 Concepts and Background Material: The Log-Log Model |
|
|
69 | (1) |
|
4.3 Concepts and Background Material: Semilog Models |
|
|
69 | (2) |
|
4.3.1 Logged Response Variable |
|
|
70 | (1) |
|
4.3.2 Logged Predictor Variable |
|
|
70 | (1) |
|
4.4 Example --- Predicting Movie Grosses After One Week |
|
|
71 | (6) |
|
|
77 | (2) |
|
5 Time Series Data And Autocorrelation |
|
|
79 | (30) |
|
|
79 | (2) |
|
5.2 Concepts and Background Material |
|
|
81 | (2) |
|
5.3 Methodology: Identifying Autocorrelation |
|
|
83 | (3) |
|
5.3.1 The Durbin-Watson Statistic |
|
|
83 | (1) |
|
5.3.2 The Autocorrelation Function (ACF) |
|
|
84 | (1) |
|
5.3.3 Residual Plots and the Runs Test |
|
|
85 | (1) |
|
5.4 Methodology: Addressing Autocorrelation |
|
|
86 | (18) |
|
5.4.1 Detrending and Deseasonalizing |
|
|
86 | (1) |
|
5.4.2 Example --- e-Commerce Retail Sales |
|
|
87 | (6) |
|
5.4.3 Lagging and Differencing |
|
|
93 | (1) |
|
5.4.4 Example --- Stock Indexes |
|
|
94 | (5) |
|
5.4.5 Generalized Least Squares (GLS): The Cochrane-Orcutt Procedure |
|
|
99 | (1) |
|
5.4.6 Example --- Time Intervals Between Old Faithful Geyser Eruptions |
|
|
100 | (4) |
|
|
104 | (5) |
|
PART III CATEGORICAL PREDICTORS |
|
|
|
|
109 | (26) |
|
|
109 | (1) |
|
6.2 Concepts and Background Material |
|
|
110 | (3) |
|
|
110 | (1) |
|
|
111 | (2) |
|
|
113 | (12) |
|
6.3.1 Codings for Categorical Predictors |
|
|
113 | (5) |
|
6.3.2 Multiple Comparisons |
|
|
118 | (2) |
|
6.3.3 Levene's Test and Weighted Least Squares |
|
|
120 | (3) |
|
6.3.4 Membership in Multiple Groups |
|
|
123 | (2) |
|
6.4 Example --- DVD Sales of Movies |
|
|
125 | (5) |
|
|
130 | (2) |
|
|
132 | (3) |
|
|
135 | (10) |
|
|
135 | (1) |
|
|
136 | (1) |
|
7.2.1 Constant Shift Models |
|
|
136 | (1) |
|
7.2.2 Varying Slope Models |
|
|
137 | (1) |
|
7.3 Example --- International Grosses of Movies |
|
|
137 | (5) |
|
|
142 | (3) |
|
PART IV NON-GAUSSIAN REGRESSION MODELS |
|
|
|
|
145 | (28) |
|
|
145 | (2) |
|
8.2 Concepts and Background Material |
|
|
147 | (5) |
|
8.2.1 The Logit Response Function |
|
|
148 | (1) |
|
8.2.2 Bernoulli and Binomial Random Variables |
|
|
149 | (1) |
|
8.2.3 Prospective and Retrospective Designs |
|
|
149 | (3) |
|
|
152 | (7) |
|
8.3.1 Maximum Likelihood Estimation |
|
|
152 | (1) |
|
8.3.2 Inference, Model Comparison, and Model Selection |
|
|
153 | (2) |
|
|
155 | (2) |
|
8.3.4 Measures of Association and Classification Accuracy |
|
|
157 | (2) |
|
|
159 | (1) |
|
8.4 Example --- Smoking and Mortality |
|
|
159 | (4) |
|
8.5 Example --- Modeling Bankruptcy |
|
|
163 | (5) |
|
|
168 | (5) |
|
|
173 | (14) |
|
|
173 | (1) |
|
9.2 Concepts and Background Material |
|
|
174 | (4) |
|
9.1.1 Nominal Response Variable |
|
|
174 | (2) |
|
9.2.2 Ordinal Response Variable |
|
|
176 | (2) |
|
|
178 | (2) |
|
|
178 | (1) |
|
9.3.2 Inference, Model Comparisons, and Strength of Fit |
|
|
178 | (2) |
|
9.3.3 Lack of Fit and Violations of Assumptions |
|
|
180 | (1) |
|
9.4 Example --- City Bond Ratings |
|
|
180 | (4) |
|
|
184 | (3) |
|
|
187 | (22) |
|
|
187 | (1) |
|
10.2 Concepts and Background Material |
|
|
188 | (2) |
|
10.2.1 The Poisson Random Variable |
|
|
188 | (1) |
|
10.2.2 Generalized Linear Models |
|
|
189 | (1) |
|
|
190 | (2) |
|
10.3.1 Estimation and Inference |
|
|
190 | (1) |
|
|
191 | (1) |
|
10.4 Overdispersion and Negative Binomial Regression |
|
|
192 | (2) |
|
|
192 | (1) |
|
10.4.2 Negative Binomial Regression |
|
|
193 | (1) |
|
10.5 Example --- Unprovoked Shark Attacks in Florida |
|
|
194 | (7) |
|
10.6 Other Count Regression Models |
|
|
201 | (4) |
|
10.7 Poisson Regression and Weighted Least Squares |
|
|
205 | (1) |
|
10.7.1 Example --- International Grosses of Movies (continued) |
|
|
204 | (2) |
|
|
206 | (3) |
|
11 Models For Time-To-Event (Survival) Data |
|
|
209 | (34) |
|
|
210 | (1) |
|
11.2 Concepts and Background Material |
|
|
211 | (3) |
|
11.2.1 The Nature of Survival Data |
|
|
211 | (1) |
|
11.2.2 Accelerated Failure Time Models |
|
|
212 | (2) |
|
11.2.3 The Proportional Hazards Model |
|
|
214 | (1) |
|
|
214 | (9) |
|
11.3.1 The Kaplan-Meier Estimator and the Log-Rank Test |
|
|
214 | (5) |
|
11.3.2 Parametric (Likelihood) Estimation |
|
|
219 | (2) |
|
11.3.3 Semiparametric (Partial Likelihood) Estimation |
|
|
221 | (2) |
|
11.3.4 The Buckley-James Estimator |
|
|
223 | (1) |
|
11.4 Example --- The Survival of Broadway Shows (continued) |
|
|
223 | (7) |
|
11.5 Left-Truncated/Right-Censored Data and Time-Varying Covariates |
|
|
230 | (8) |
|
11.5.1 Left-Truncated/Right-Censored Data |
|
|
230 | (3) |
|
11.5.2 Example --- The Survival of Broadway Shows (continued) |
|
|
233 | (1) |
|
11.5.3 Time-Varying Covariates |
|
|
233 | (2) |
|
11.5.4 Example --- Female Heads of Government |
|
|
235 | (3) |
|
|
238 | (5) |
|
PART V OTHER REGRESSION MODELS |
|
|
|
|
243 | (12) |
|
|
243 | (1) |
|
12.2 Concepts and Background Material |
|
|
244 | (2) |
|
|
246 | (2) |
|
12.3.1 Nonlinear Least Squares Estimation |
|
|
246 | (1) |
|
12.3.2 Inference for Nonlinear Regression Models |
|
|
247 | (1) |
|
12.4 Example --- Michaelis-Menten Enzyme Kinetics |
|
|
248 | (4) |
|
|
252 | (3) |
|
13 Models For Longitudinal And Nested Data |
|
|
255 | (22) |
|
|
257 | (1) |
|
13.2 Concepts and Background Material |
|
|
257 | (3) |
|
13.2.1 Nested Data and ANOVA |
|
|
257 | (1) |
|
13.2.2 Longitudinal Data and Time Series |
|
|
258 | (1) |
|
13.2.3 Fixed Effects Versus Random Effects |
|
|
259 | (1) |
|
|
260 | (4) |
|
13.3.1 The Linear Mixed Effects Model |
|
|
260 | (2) |
|
13.3.2 The Generalized Linear Mixed Effects Model |
|
|
262 | (1) |
|
13.3.3 Generalized Estimating Equations |
|
|
262 | (1) |
|
13.3.4 Nonlinear Mixed Effects Models |
|
|
263 | (1) |
|
13.4 Example --- Tumor Growth in a Cancer Study |
|
|
264 | (5) |
|
13.5 Example --- Unprovoked Shark Attacks in the United States |
|
|
269 | (6) |
|
|
275 | (2) |
|
14 Regularization Method's And Sparse Models |
|
|
277 | (18) |
|
|
277 | (1) |
|
14.2 Concepts and Background Material |
|
|
278 | (2) |
|
14.2.1 The Bias-Variance Tradeoff |
|
|
278 | (1) |
|
14.2.2 Large Numbers of Predictors and Sparsity |
|
|
279 | (1) |
|
|
280 | (7) |
|
14.3.1 Forward Stepwise Regression |
|
|
280 | (1) |
|
|
281 | (1) |
|
|
281 | (2) |
|
14.3.4 Other Regularization Methods |
|
|
283 | (1) |
|
14.3.5 Choosing the Regularization Parameter(s) |
|
|
284 | (1) |
|
14.3.6 More Structured Regression Problems |
|
|
285 | (1) |
|
14.3.7 Cautions About Regularization Methods |
|
|
286 | (1) |
|
14.4 Example --- Human Development Index |
|
|
287 | (2) |
|
|
289 | (6) |
|
PART VI NONPARAMETRIC AND SEMIPARAMETRIC MODELS |
|
|
|
15 Smoothing And Additive Models |
|
|
295 | (18) |
|
|
296 | (1) |
|
15.2 Concepts and Background Material |
|
|
296 | (2) |
|
15.2.1 The Bias-Variance Tradeoff |
|
|
296 | (1) |
|
15.2.2 Smoothing and Local Regression |
|
|
297 | (1) |
|
|
298 | (3) |
|
15.3.1 Local Polynomial Regression |
|
|
298 | (1) |
|
15.3.2 Choosing the Bandwidth |
|
|
298 | (1) |
|
|
299 | (1) |
|
15.3.4 Multiple Predictors, the Curse of Dimensionality, and Additive Models |
|
|
300 | (1) |
|
15.4 Example --- Prices of German Used Automobiles |
|
|
301 | (3) |
|
15.5 Local and Penalized Likelihood Regression |
|
|
304 | (3) |
|
15.5.1 Example --- The Bechdel Rule and Hollywood Movies |
|
|
305 | (2) |
|
15.6 Using Smoothing to Identify Interactions |
|
|
307 | (3) |
|
15.6.1 Example --- Estimating Home Prices (continued) |
|
|
308 | (2) |
|
|
310 | (3) |
|
|
313 | (24) |
|
|
314 | (1) |
|
16.2 Concepts and Background Material |
|
|
314 | (4) |
|
16.2.1 Recursive Partitioning |
|
|
314 | (3) |
|
|
317 | (1) |
|
|
318 | (3) |
|
|
318 | (1) |
|
16.3.2 Conditional Inference Trees |
|
|
319 | (1) |
|
|
320 | (1) |
|
|
321 | (206) |
|
16.4.1 Estimating Home Prices (continued) |
|
|
321 | (1) |
|
16.4.2 Example --- Courtesy in Airplane Travel |
|
|
322 | (5) |
|
16.5 Trees for Other Types of Data |
|
|
327 | (1) |
|
16.5.1 Trees for Nested and Longitudinal Data |
|
|
327 | (1) |
|
|
328 | (4) |
|
|
332 | (5) |
Bibliography |
|
337 | (6) |
Index |
|
343 | |