Preface |
|
xi | |
|
Part I The Multiple Linear Regression Model |
|
|
|
1 Multiple Linear Regression |
|
|
3 | (20) |
|
|
3 | (1) |
|
1.2 Concepts and Background Material |
|
|
4 | (5) |
|
1.2.1 The Linear Regression Model |
|
|
4 | (1) |
|
1.2.2 Estimation Using Least Squares |
|
|
5 | (3) |
|
|
8 | (1) |
|
|
9 | (7) |
|
1.3.1 Interpreting Regression Coefficients |
|
|
9 | (1) |
|
1.3.2 Measuring the Strength of the Regression Relationship |
|
|
10 | (2) |
|
1.3.3 Hypothesis Tests and Confidence Intervals for β |
|
|
12 | (1) |
|
1.3.4 Fitted Values and Predictions |
|
|
13 | (1) |
|
1.3.5 Checking Assumptions Using Residual Plots |
|
|
14 | (2) |
|
1.4 Example---Estimating Home Prices |
|
|
16 | (3) |
|
|
19 | (4) |
|
|
23 | (30) |
|
|
23 | (1) |
|
2.2 Concepts and Background Material |
|
|
24 | (5) |
|
2.2.1 Using Hypothesis Tests to Compare Models |
|
|
24 | (2) |
|
|
26 | (3) |
|
|
29 | (9) |
|
|
29 | (2) |
|
2.3.2 Example---Estimating Home Prices (continued) |
|
|
31 | (7) |
|
2.4 Indicator Variables and Modeling Interactions |
|
|
38 | (8) |
|
2.4.1 Example---Electronic Voting and the 2004 Presidential Election |
|
|
40 | (6) |
|
|
46 | (7) |
|
Part II Addressing Violations of Assumptions |
|
|
|
3 Diagnostics for Unusual Observations |
|
|
53 | (14) |
|
|
53 | (1) |
|
3.2 Concepts and Background Material |
|
|
54 | (2) |
|
|
56 | (4) |
|
3.3.1 Residuals and Outliers |
|
|
56 | (1) |
|
|
57 | (1) |
|
3.3.3 Influential Points and Cook's Distance |
|
|
58 | (2) |
|
3.4 Example--Estimating Home Prices (continued) |
|
|
60 | (4) |
|
|
64 | (3) |
|
4 Transformations and Linearizable Models |
|
|
67 | (14) |
|
|
67 | (2) |
|
4.2 Concepts and Background Material: The Log-Log Model |
|
|
69 | (1) |
|
4.3 Concepts and Background Material: Semilog Models |
|
|
69 | (2) |
|
4.3.1 Logged Response Variable |
|
|
70 | (1) |
|
4.3.2 Logged Predictor Variable |
|
|
70 | (1) |
|
4.4 Example--Predicting Movie Grosses After One Week |
|
|
71 | (7) |
|
|
78 | (3) |
|
5 Time Series Data and Autocorrelation |
|
|
81 | (32) |
|
|
81 | (2) |
|
5.2 Concepts and Background Material |
|
|
83 | (2) |
|
5.3 Methodology: Identifying Autocorrelation |
|
|
85 | (3) |
|
5.3.1 The Durbin-Watson Statistic |
|
|
86 | (1) |
|
5.3.2 The Autocorrelation Function (ACF) |
|
|
87 | (1) |
|
5.3.3 Residual Plots and the Runs Test |
|
|
87 | (1) |
|
5.4 Methodology: Addressing Autocorrelation |
|
|
88 | (19) |
|
5.4.1 Detrending and Deseasonalizing |
|
|
88 | (1) |
|
5.4.2 Example--e-Commerce Retail Sales |
|
|
89 | (7) |
|
5.4.3 Lagging and Differencing |
|
|
96 | (1) |
|
5.4.4 Example--Stock Indexes |
|
|
96 | (5) |
|
5.4.5 Generalized Least Squares (GLS): The Cochrane-Orcutt Procedure |
|
|
101 | (3) |
|
5.4.6 Example--Time Intervals Between Old Faithful Eruptions |
|
|
104 | (3) |
|
|
107 | (6) |
|
Part III Categorical Predictors |
|
|
|
|
113 | (26) |
|
|
113 | (1) |
|
6.2 Concepts and Background Material |
|
|
114 | (3) |
|
|
114 | (1) |
|
|
115 | (2) |
|
|
117 | (12) |
|
6.3.1 Codings for Categorical Predictors |
|
|
117 | (5) |
|
6.3.2 Multiple Comparisons |
|
|
122 | (2) |
|
6.3.3 Levene's Test and Weighted Least Squares |
|
|
124 | (3) |
|
6.3.4 Membership in Multiple Groups |
|
|
127 | (2) |
|
6.4 Example--DVD Sales of Movies |
|
|
129 | (5) |
|
|
134 | (2) |
|
|
136 | (3) |
|
|
139 | (10) |
|
|
139 | (1) |
|
|
139 | (2) |
|
7.2.1 Constant Shift Models |
|
|
139 | (2) |
|
7.2.2 Varying Slope Models |
|
|
141 | (1) |
|
7.3 Example--International Grosses of Movies |
|
|
141 | (4) |
|
|
145 | (4) |
|
Part IV OTHER REGRESSION MODELS |
|
|
|
|
149 | (28) |
|
|
|
8.2 Concepts and Background Material |
|
|
151 | (5) |
|
8.2.1 The Logit Response Function |
|
|
151 | (1) |
|
8.2.2 Bernoulli and Binomial Random Variables |
|
|
152 | (1) |
|
8.2.3 Prospective and Retrospective Designs |
|
|
153 | (3) |
|
|
156 | (7) |
|
8.3.1 Maximum Likelihood Estimation |
|
|
156 | (1) |
|
8.3.2 Inference, Model Comparison, and Model Selection |
|
|
157 | (2) |
|
|
159 | (2) |
|
8.3.4 Measures of Association and Classification Accuracy |
|
|
161 | (2) |
|
|
163 | (1) |
|
8.4 Example--Smoking and Mortality |
|
|
163 | (4) |
|
8.5 Example--Modeling Bankruptcy |
|
|
167 | (6) |
|
|
173 | (4) |
|
|
177 | (14) |
|
|
177 | (1) |
|
9.2 Concepts and Background Material |
|
|
178 | (4) |
|
9.2.1 Nominal Response Variable |
|
|
178 | (2) |
|
9.2.2 Ordinal Response Variable |
|
|
180 | (2) |
|
|
182 | (7) |
|
|
182 | (1) |
|
9.3.2 Inference, Model Comparisons, and Strength of Fit |
|
|
183 | (1) |
|
9.3.3 Lack of Fit and Violations of Assumptions |
|
|
184 | (5) |
|
9.4 Example--City Bond Ratings |
|
|
189 | (1) |
|
|
189 | (2) |
|
|
191 | (24) |
|
|
191 | (1) |
|
10.2 Concepts and Background Material |
|
|
192 | (2) |
|
10.2.1 The Poisson Random Variable |
|
|
192 | (1) |
|
10.2.2 Generalized Linear Models |
|
|
193 | (1) |
|
|
194 | (2) |
|
10.3.1 Estimation and Inference |
|
|
194 | (1) |
|
|
195 | (1) |
|
10.4 Overdispersion and Negative Binomial Regression |
|
|
196 | (2) |
|
|
196 | (1) |
|
10.4.2 Negative Binomial Regression |
|
|
197 | (1) |
|
10.5 Example--Unprovoked Shark Attacks in Florida |
|
|
198 | (8) |
|
10.6 Other Count Regression Models |
|
|
206 | (2) |
|
10.7 Poisson Regression and Weighted Least Squares |
|
|
208 | (7) |
|
10.7.1 Example--International Grosses of Movies (continued) |
|
|
205 | (6) |
|
|
211 | (4) |
|
|
215 | (12) |
|
|
215 | (1) |
|
11.2 Concepts and Background Material |
|
|
216 | (2) |
|
|
218 | (2) |
|
11.3.1 Nonlinear Least Squares Estimation |
|
|
218 | (1) |
|
11.3.2 Inference for Nonlinear Regression Models |
|
|
219 | (1) |
|
11.4 Example--Michaelis-Menten Enzyme Kinetics |
|
|
220 | (5) |
|
|
225 | (2) |
Bibliography |
|
227 | (4) |
Index |
|
231 | |