Muutke küpsiste eelistusi

Hands-On Introduction to LabVIEW for Scientists and Engineers 3rd Revised edition [Pehme köide]

(Reed College)
  • Formaat: Paperback / softback, 688 pages, kõrgus x laius x paksus: 236x192x26 mm, kaal: 1068 g
  • Ilmumisaeg: 22-Oct-2015
  • Kirjastus: Oxford University Press
  • ISBN-10: 019021189X
  • ISBN-13: 9780190211899
  • Pehme köide
  • Hind: 63,99 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 688 pages, kõrgus x laius x paksus: 236x192x26 mm, kaal: 1068 g
  • Ilmumisaeg: 22-Oct-2015
  • Kirjastus: Oxford University Press
  • ISBN-10: 019021189X
  • ISBN-13: 9780190211899
"Introduction to LabView programming for scientists and engineers"--

Hands-On Introduction to LabVIEW for Scientists and Engineers, Third Edition, explores practical programming solutions for carrying out interesting and relevant projects. Readers--who are assumed to have no prior computer programming or LabVIEW background--will begin writing meaningful programs in the first few pages.

Arvustused

The hands-on method really allows students to learn the material in sufficient depth. I know of no other book that comes even close. * Mark Beck, Whitman College * This book is exactly what I need to fill gaps in student understanding of LabVIEW. * Eric Ayars, California State University, Chico * This text is the most comprehensive and readable book available for LabVIEW. * Ladimer S. Nagurney, University of Hartford *

Preface xiii
About the Author xviii
1 Labview Program Development 1(37)
1.1 LabVIEW Programming Environment
1(1)
1.2 Blank VI
2(1)
1.3 Front Panel Editing
3(9)
1.4 Block Diagram Editing
12(11)
1.5 Program Execution
23(2)
1.6 Pop-Up Menu and Data-Type Representation
25(3)
1.7 Program Storage
28(2)
1.8 Quick Drop
30(3)
Do It Yourself
33(2)
Problems
35(3)
2 The While Loop And Waveform Chart 38(42)
2.1 Programming Structures and Graphing Modes
38(1)
2.2 While Loop Basics
39(2)
2.3 Sine-Wave Plot Using a While Loop and Waveform Chart
41(6)
2.4 LabVIEW Help Window
47(2)
2.5 Front Panel Editing
49(4)
2.6 Waveform Chart Pop-Up Menu
53(3)
2.7 Finishing the Program
56(1)
2.8 Program Execution
57(2)
2.9 Program Improvements
59(11)
2.10 Data Types and Automatic Creation Feature
70(4)
Do It Yourself
74(1)
Problems
75(5)
3 The For Loop And Waveform Graph 80(45)
3.1 For Loop Basics
80(1)
3.2 Sine-Wave Plot Using a For Loop and Waveform Graph
81(1)
3.3 Waveform Graph
82(1)
3.4 Owned and Free Labels
83(1)
3.5 Creation of Sine Wave Using a For Loop
84(2)
3.6 Cloning Block-Diagram Icons
86(2)
3.7 Auto-Indexing Feature
88(3)
3.8 Running the VI
91(1)
3.9 X-Axis Calibration of the Waveform Graph
92(6)
3.10 Sine-Wave Plot Using a While Loop and Waveform Graph
98(4)
3.11 Front-Panel Array Indicator
102(5)
3.12 Debugging With the Probe Watch Window and Error List
107(7)
Do It Yourself
114(2)
Problems
116(9)
4 The Mathscript Node And XY Graph 125(51)
4.1 MathScript Node Basics
125(3)
4.2 Quick MathScript Node Example: Sine-Wave Plot
128(7)
4.3 Waveform Simulator Using a MathScript Node and XY Graph
135(5)
4.4 Creating an XY Cluster
140(2)
4.5 Running the VI
142(1)
4.6 LabVIEW MathScript Window
142(5)
4.7 Adding Shape Options Using an Enumerated Type Control
147(2)
4.8 Finishing the Block Diagram
149(4)
4.9 Running the VI
153(1)
4.10 Control and Indicator Clusters
154(7)
4.11 Creating an Icon Using the Icon Editor
161(1)
4.12 Icon Design
161(5)
4.13 Connector Assignment
166(4)
Do It Yourself
170(1)
Problems
171(5)
5 Data Acquisition Using Dao Assistant 176(61)
5.1 Data Acquisition VIs
176(1)
5.2 Data Acquisition Hardware
177(2)
5.3 Analog Input Modes
179(3)
5.4 Range and Resolution
182(1)
5.5 Sampling Frequency and the Aliasing Effect
182(2)
5.6 Measurement & Automation Explorer (MAX)
184(4)
5.7 Simple Analog Input Operation on a DC Voltage
188(12)
5.8 Digital Oscilloscope
200(9)
5.9 Analog Output
209(1)
5.10 DC Voltage Source
210(7)
5.11 Software-Timed Sine-Wave Generator
217(2)
5.12 Hardware-Timed Waveform Generator
219(3)
5.13 Placing a Custom-Made VI on a Block Diagram
222(2)
5.14 Completing and Executing Waveform Generator (Express)
224(2)
5.15 Modified Waveform Generator
226(2)
Do It Yourself
228(1)
Problems
229(8)
6 Data Files And Character Strings 237(40)
6.1 ASCII Text and Binary Data Files
237(2)
6.2 Storing Data in Spreadsheet-Formatted File
239(1)
6.3 Storing a One-Dimensional Data Array
240(3)
6.4 Transpose Option
243(3)
6.5 Storing a Two-Dimensional Data Array
246(3)
6.6 Controlling the Format of Stored Data
249(2)
6.7 The Path Constant and Platform Portability
251(2)
6.8 Fundamental File I/O VIs
253(5)
6.9 Adding Text Labels to a Spreadsheet File
258(3)
6.10 Backslash Codes
261(2)
Do It Yourself
263(3)
Problems
266(11)
7 Shift Registers 277(54)
7.1 Shift Register Basics
277(3)
7.2 Quick Shift Register Example: Integer Sum
280(4)
7.3 Noise and Signal Averaging
284(2)
7.4 Noisy Sine VI
286(6)
7.5 Moving Average of Four Traces
292(9)
7.6 Modularity and Automatic SubVI Creation
301(7)
7.7 Moving Average of Arbitrary Number of Traces
308(14)
Do It Yourself
322(1)
Problems
322(9)
8 The Case Structure 331(48)
8.1 Case Structure Basics
331(4)
8.2 Quick Case Structure Example: Runtime Options Using Property Nodes
335(12)
8.3 State Machine Architecture: Guessing Game
347(14)
8.4 State Machine Architecture: Express VI-Based Digital Oscilloscope
361(9)
Do It Yourself
370(1)
Problems
371(8)
9 Data Dependency And The Sequence Structure 379(28)
9.1 Data Dependency and Sequence Structure Basics
379(4)
9.2 Event Timer Using a Sequence Structure
383(7)
9.3 Event Timer Using Data Dependency
390(4)
9.4 Highlight Execution
394(2)
Do It Yourself
396(1)
Problems
397(10)
10 Analysis VIs: Curve Fitting 407(43)
10.1 Thermistor Resistance-Temperature Data File
407(3)
10.2 Temperature Measurement Using Thermistors
410(3)
10.3 The Linear Least-Squares Method
413(2)
10.4 Inputting Data to a VI Using a Front-Panel Array Control
415(3)
10.5 Inputting Data to a VI by Reading from a Disk File
418(3)
10.6 Slicing Up a Multi-Dimensional Array
421(4)
10.7 Running the VI
425(1)
10.8 Curve Fitting Using the Linear Least-Squares Method
426(8)
10.9 Residual Plot
434(2)
10.10 Curve Fitting Using the Nonlinear Least-Squares Method
436(3)
Do It Yourself
439(3)
Problems
442(8)
11 Analysis VIs: Fast Fourier Transform 450(50)
11.1 Quick Fast Fourier Transform Example
450(9)
11.2 The Fourier Transform
459(1)
11.3 Discrete Sampling and the Nyquist Frequency
460(1)
11.4 The Discrete Fourier Transform
461(2)
11.5 The Fast Fourier Transform
463(1)
11.6 Frequency Calculator VI
464(3)
11.7 FFT of Sinusoids
467(3)
11.8 Applying the FFT to Various Sinusoidal Inputs
470(3)
11.9 Magnitude of Complex-Amplitude
473(6)
11.10 Observing Leakage
479(3)
11.11 Windowing
482(6)
11.12 Estimating Frequency and Amplitude
488(4)
11.13 Aliasing
492(1)
Do It Yourself
492(2)
Problems
494(6)
12 Data Acquisition And Generation Using DAQMX VIs 500(42)
12.1 DAQmx VI Basics
500(2)
12.2 Simple Analog Input Operation on a DC Voltage
502(6)
12.3 Digital Oscilloscope
508(7)
12.4 Express VI Automatic Code Generation
515(1)
12.5 Limitations of Express VIs
516(2)
12.6 Improving Digital Oscilloscope Using State Machine Architecture
518(13)
12.7 Analog Output Operations
531(1)
12.8 Waveform Generator
532(3)
Do It Yourself
535(1)
Problems
535(7)
13 Control Of Stand-Alone Instruments 542(77)
13.1 Instrument Control using VISA VIs
542(1)
13.2 The VISA Session
543(4)
13.3 The IEEE 488.2 Standard
547(1)
13.4 Common Commands
547(1)
13.5 Status Reporting
548(4)
13.6 Device-Specific Commands
552(2)
13.7 Specific Hardware Used In This
Chapter
554(1)
13.8 Measurement & Automation Explorer (MAX)
555(7)
13.9 Simple VISA-Based Query Operation
562(4)
13.10 Message Termination
566(1)
13.11 Getting and Setting Communication Properties Using a Property Node
567(4)
13.12 Performing a Measurement over the Interface Bus
571(5)
13.13 Synchronization Methods
576(8)
13.14 Measurement VI Based on the Serial Poll Method
584(6)
13.15 Measurement VI Based on the Service Request Method
590(6)
13.16 Creating an Instrument Driver
596(14)
13.17 Using the Instrument Driver to Write an Application Program
610(5)
Do It Yourself
615(1)
Problems
616(3)
Appendix A Formula Node Programming For
Chapter 4
619(8)
A.1 Formula Node Basics
619(1)
A.2 Quick Formula Node Example: Sine-Wave Plot (Section 4.2)
620(4)
A.3 Formula Node-Based Waveform Simulator (Sections 4.3-4.4)
624(1)
A.4 Formula Node-Based Waveform Simulator (Section 4.8)
625(1)
A.5 Formula Node-Based Waveform Simulator (Section 4.10)
626(1)
Appendix B Mathematics Of Leakage And Windowing 627(9)
B.1 Analytic Description of Leakage
627(4)
B.2 Description of Leakage Using the Convolution Theorem
631(5)
Appendix C PID Temperature Control Project 636(15)
C.1 Project Description
636(1)
C.2 Voltage-Controlled Bidirectional Current Driver for Thermoelectric Device
636(2)
C.3 PID Temperature Control Algorithm
638(3)
C.4 PID Temperature Control System
641(1)
C.5 Construction of Temperature Control System
642(9)
Index 651
John Essick is Professor of Physics at Reed College. Since 1993, he has taught computer-based experimentation using LabVIEW as part of Reed's junior-level Advanced Laboratory and used LabVIEW to carry out many research projects.