Muutke küpsiste eelistusi

Hands-On Introduction to LabVIEW for Scientists and Engineers 4th Revised edition [Pehme köide]

(Professor of Physics, Reed College)
  • Formaat: Paperback / softback, 720 pages, kõrgus x laius x paksus: 231x188x25 mm, kaal: 1111 g
  • Ilmumisaeg: 12-Jul-2018
  • Kirjastus: Oxford University Press Inc
  • ISBN-10: 0190853069
  • ISBN-13: 9780190853068
Teised raamatud teemal:
  • Formaat: Paperback / softback, 720 pages, kõrgus x laius x paksus: 231x188x25 mm, kaal: 1111 g
  • Ilmumisaeg: 12-Jul-2018
  • Kirjastus: Oxford University Press Inc
  • ISBN-10: 0190853069
  • ISBN-13: 9780190853068
Teised raamatud teemal:
Hands-On Introduction to LaVIEW for Scientists and Engineers provides a learn-by-doing approach to acquiring the computer-based skills used daily in experimental work. The book is not the typical manual-like presentation of LabVIEW. Rather, Hands-On Introduction to LabVIEW guides students through using this powerful laboratory tool to carry out interesting and relevant projects. Readers, who are assumed to have no prior computer programming or LabVIEW experience, begin writing meaningful programs in the first few pages. After learning through experience, readers can master the skills needed to carry out effective experiments.
Preface xiii
About the Author xviii
1 Labview Program Development
1.1 LabVIEW Programming Environment
1(1)
1.2 Blank VI
2(1)
1.3 Front-Panel Editing
3(8)
1.4 Block-Diagram Editing
11(11)
1.5 Program Execution
22(2)
1.6 Pop-Up Menu and Data-Type Representation
24(3)
1.7 Program Storage
27(2)
1.8 Quick Drop
29(3)
Do It Yourself
32(2)
Use It!
34(2)
Problems
36(3)
2 The While Loop And Waveform Chart 39(44)
2.1 Programming Structures and Graphing Modes
39(1)
2.2 While Loop Basics
40(2)
2.3 Sine-Wave Plot Using a While Loop and Waveform Chart
42(6)
2.4 LabVIEW Help Window
48(2)
2.5 Front-Panel Editing
50(3)
2.6 Waveform Chart Pop-Up Menu
53(3)
2.7 Finishing the Program
56(1)
2.8 Program Execution
57(2)
2.9 Program Improvements
59(11)
2.10 Data Types and Automatic Creation Feature
70(4)
Do It Yourself
74(1)
Use It!
75(2)
Problems
77(6)
3 The For Loop And Waveform Graph 83(44)
3.1 For Loop Basics
83(1)
3.2 Sine-Wave Plot Using a For Loop and Waveform Graph
84(1)
3.3 Waveform Graph
85(1)
3.4 Owned and Free Labels
86(1)
3.5 Creation of Sine Wave Using a For Loop
87(2)
3.6 Cloning Block-Diagram Icons
89(2)
3.7 Auto-Indexing Feature
91(3)
3.8 Running the VI
94(1)
3.9 X-Axis Calibration of the Waveform Graph
94(6)
3.10 Sine-Wave Plot Using a While Loop and Waveform Graph
100(3)
3.11 Front-Panel Array Indicator
103(5)
3.12 Debugging with the Probe Watch Window and Error List
108(7)
Do It Yourself
115(2)
Use It!
117(2)
Problems
119(8)
4 The Mathscript Node And Xy Graph 127(52)
4.1 MathScript Node Basics
127(3)
4.2 Quick MathScript Node Example: Sine-Wave Plot
130(7)
4.3 Waveform Simulator Using a MathScript Node and XY Graph
137(5)
4.4 Creating an XY Cluster
142(1)
4.5 Running the VI
143(1)
4.6 LabVIEW MathScript Window
144(4)
4.7 Adding Shape Options Using an Enumerated Type Control
148(3)
4.8 Finishing the Block Diagram
151(4)
4.9 Running the VI
155(1)
4.10 Control and Indicator Clusters
156(7)
4.11 Creating an Icon Using the Icon Editor
163(1)
4.12 Icon Design
163(5)
4.13 Connector Assignment
168(4)
Do It Yourself
172(1)
Use It!
173(1)
Problems
174(5)
5 Introduction To Data Acquisition Devices Using Max 179(27)
5.1 Data Acquisition Hardware
179(2)
5.2 Measurement & Automation Explorer (MAX)
181(4)
5.3 Analog Input Modes
185(2)
5.4 Range and Resolution
187(1)
5.5 Sampling Frequency and the Aliasing Effect
187(2)
5.6 Analog Input Operation Using MAX
189(4)
5.7 Analog Output
193(1)
5.8 Analog Output Operation Using MAX
193(4)
5.9 Digital Input/Output
197(1)
5.10 Digital Input/Output Operation Using Max
198(2)
Do It Yourself
200(2)
Use It!
202(2)
Problems
204(2)
6 Data Acquisition Using Dad Assistant 206(48)
6.1 Data Acquisition VIs
206(1)
6.2 Simple Analog Input Operation on a DC Voltage
207(11)
6.3 Digital Oscilloscope
218(10)
6.4 DC Voltage Storage
228(6)
6.5 Hardware-Timed Waveform Generator
234(3)
6.6 Placing a Custom-Made VI on a Block Diagram
237(3)
6.7 Completing and Executing Waveform Generator (Express)
240(2)
Do It Yourself
242(1)
Use It!
243(3)
Problems
246(8)
7 Data Files And Character Strings 254(38)
7.1 ASCII Text and Binary Data Files
254(2)
7.2 Storing Data in a Spreadsheet-Formatted File
256(1)
7.3 Storing a One-Dimensional Data Array
257(3)
7.4 Transpose Option
260(2)
7.5 Storing a Two-Dimensional Data Array
262(4)
7.6 Controlling the Format of Stored Data
266(1)
7.7 The Path Constant and Platform Portability
267(2)
7.8 Fundamental File I/O VIs
269(5)
7.9 Adding Text Labels to a Spreadsheet File
274(3)
7.10 Backslash Codes
277(2)
Do It Yourself
279(3)
Use It!
282(2)
Problems
284(8)
8 Shift Registers 292(56)
8.1 Shift Register Basics
292(3)
8.2 Quick Shift Register Example: Integer Sum
295(4)
8.3 Noise and Signal Averaging
299(2)
8.4 Noisy Sine VI
301(6)
8.5 Moving Average of Four Traces
307(9)
8.6 Modularity and Automatic SubVI Creation
316(7)
8.7 Moving Average of Arbitrary Number of Traces
323(14)
Do It Yourself
337(1)
Use It!
337(3)
Problems
340(8)
9 The Case Structure 348(48)
9.1 Case Structure Basics
348(3)
9.2 Quick Case Structure Example: Runtime Options Using Property Nodes
351(12)
9.3 State Machine Architecture: Guessing Game
363(14)
9.4 State Machine Architecture: Express VI-Based Digital Oscilloscope
377(9)
Do It Yourself
386(1)
Use It!
387(2)
Problems
389(7)
10 Data Dependency And The Sequence Structure 396(29)
10.1 Data Dependency and Sequence Structure Basics
396(4)
10.2 Event Timer Using a Sequence Structure
400(7)
10.3 Event Timer Using Data Dependency
407(4)
10.4 Highlight Execution
411(2)
Do It Yourself
413(1)
Use It!
414(3)
Problems
417(8)
11 Analysis Vis: Curve Fitting 425(45)
11.1 Thermistor Resistance-Temperature Data File
425(3)
11.2 Temperature Measurement Using Thermistors
428(3)
11.3 The Linear Least-Squares Method
431(2)
11.4 Inputting Data to a VI Using a Front-Panel Array Control
433(3)
11.5 Inputting Data to a VI by Reading from a Computer File
436(3)
11.6 Slicing Up a Multidimensional Array
439(4)
11.7 Running the VI
443(1)
11.8 Curve Fitting Using the Linear Least-Squares Method
444(8)
11.9 Residual Plot
452(2)
11.10 Curve Fitting Using the Nonlinear Least-Squares Method
454(3)
Do It Yourself
457(3)
Use It!
460(2)
Problems
462(8)
12 Analysis Vls: Fast Fourier Transform 470(55)
12.1 Quick Fast Fourier Transform Example
470(10)
12.2 The Fourier Transform
480(1)
12.3 Discrete Sampling and the Nyquist Frequency
481(1)
12.4 The Discrete Fourier Transform
482(2)
12.5 The Fast Fourier Transform
484(1)
12.6 Frequency Calculator VI
485(3)
12.7 FFT of Sinusoids
488(3)
12.8 Applying the FFT to Various Sinusoidal Inputs
491(3)
12.9 Magnitude of the Complex-Amplitude
494(6)
12.10 Observing Leakage
500(3)
12.11 Windowing
503(6)
12.12 Estimating Frequency and Amplitude
509(4)
12.13 Aliasing
513(1)
Do It Yourself
514(1)
Use It!
515(4)
Problems
519(6)
13 Data Acquisition And Generation Using DAQmx VIs 525(49)
13.1 DAQmx VI Basics
525(2)
13.2 Simple Analog Input Operation on a DC Voltage
527(6)
13.3 Digital Oscilloscope
533(7)
13.4 Express VI Automatic Code Generation
540(1)
13.5 Limitations of Express VIs
541(2)
13.6 Improving Digital Oscilloscope Using State Machine Architecture
543(13)
13.7 Analog Output Operations
556(1)
13.8 Waveform Generator
557(3)
Do It Yourself
560(1)
Use It!
561(4)
Problems
565(9)
14 Control Of Stand-Alone Instruments 574(110)
14.1 Instrument Control Using VISA VIs
574(1)
14.2 The VISA Session
575(4)
14.3 The IEEE 488.2 Standard
579(1)
14.4 Common Commands
579(1)
14.5 Status Reporting
580(4)
14.6 Device-Specific Commands
584(2)
14.7 Specific Hardware Used in This
Chapter
586(1)
14.8 Measurement & Automation Explorer (MAX)
587(7)
14.9 Simple VISA-Based Query Operation
594(4)
14.10 Message Termination
598(1)
14.11 Getting and Setting Communication Properties Using a Property Node
599(4)
14.12 Performing a Measurement over the Interface Bus
603(5)
14.13 Synchronization Methods
608(8)
14.14 Measurement VI Based on the Serial Poll Method
616(6)
14.15 Measurement VI Based on the Service Request Method
622(6)
14.16 Creating an Instrument Driver
628(14)
14.17 Using the Instrument Driver to Write an Application Program
642(5)
Do It Yourself
647(1)
Use It!
648(3)
Problems
651(2)
Appendix A: Formula Node Programming For
Chapter 4
653(8)
A.1 Formula Node Basics
653(1)
A.2 Quick Formula Node Example: Sine-Wave Plot (Section 4.2)
654(4)
A.3 Formula Node-Based Waveform Simulator (Sections 4.3-4.4)
658(1)
A.4 Formula Node-Based Waveform Simulator (Section 4.8)
659(1)
A.5 Formula Node-Based Waveform Simulator (Section 4.10)
660(1)
Appendix B: Mathematics Of Leakage And Windowing
661(9)
B.1 Analytic Description of Leakage
661(4)
B.2 Description of Leakage Using the Convolution Theorem
665(5)
Appendix C: Pid Temperature Control Project
670(14)
C.1 Project Description
670(1)
C.2 Voltage-Controlled Bidirectional Current Driver for Thermoelectric Device
670(2)
C.3 PID Temperature Control Algorithm
672(3)
C.4 PID Temperature Control System
675(1)
C.5 Construction of Temperature Control System
676(8)
Index 684
John Essick is professor of Physics at Reed College. His research interests focus on the optoelectronic properties of semiconductors. Since 1993, Dr. Essick has taught computer-based experimentation using LabVIEW as part of Reed's junior-level Advanced Laboratory and used LabVIEW to carry out many research projects.