Muutke küpsiste eelistusi

Heat and Mass Transfer in Particulate Suspensions 2013 ed. [Pehme köide]

  • Formaat: Paperback / softback, 167 pages, kõrgus x laius: 235x155 mm, kaal: 2818 g, 38 Illustrations, black and white; XI, 167 p. 38 illus., 1 Paperback / softback
  • Sari: SpringerBriefs in Thermal Engineering and Applied Science
  • Ilmumisaeg: 03-Jan-2013
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 1461458536
  • ISBN-13: 9781461458531
  • Pehme köide
  • Hind: 48,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 167 pages, kõrgus x laius: 235x155 mm, kaal: 2818 g, 38 Illustrations, black and white; XI, 167 p. 38 illus., 1 Paperback / softback
  • Sari: SpringerBriefs in Thermal Engineering and Applied Science
  • Ilmumisaeg: 03-Jan-2013
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 1461458536
  • ISBN-13: 9781461458531
Heat and Mass Transfer in Particulate Suspensions is a critical review of the subject of heat and mass transfer related to particulate Suspensions, which include both fluid-particles and fluid-droplet Suspensions. Fundamentals, recent advances and industrial applications are examined. The subject of particulate heat and mass transfer is currently driven by two significant applications: energy transformations –primarily combustion – and heat transfer equipment. The first includes particle and droplet combustion processes in engineering Suspensions as diverse as the Fluidized Bed Reactors (FBR’s) and Internal Combustion Engines (ICE’s). On the heat transfer side, cooling with nanofluids, which include nanoparticles, has attracted a great deal of attention in the last decade both from the fundamental and the applied side and has produced several scientific publications. A monograph that combines the fundamentals of heat transfer with particulates as well as the modern applications of the subject would be welcomed by both academia and industry.
1 Fundamentals
1(46)
1.1 Introduction
1(5)
1.1.1 Nomenclature
2(2)
1.1.2 Timescales, Lengthscales, and Dimensionless Groups
4(2)
1.2 Thermodynamics of Phase Change
6(4)
1.2.1 Effect of the Carrier Gas Concentration
8(1)
1.2.2 Effect of Curvature and Surface Tension
9(1)
1.3 Equation of Motion
10(17)
1.3.1 Steady, Stokesian Flow for Spheres
11(2)
1.3.2 Steady Flow at Higher Reynolds Numbers
13(4)
1.3.3 Drag on Irregular Particles
17(1)
1.3.4 Blowing Effects
18(2)
1.3.5 Other Effects on the Steady Drag Coefficients
20(1)
1.3.6 Transient Flow
20(4)
1.3.7 Transverse Forces and Lift Effects
24(3)
1.4 Heat and Mass Transfer
27(20)
1.4.1 Steady, Stokesian Heat Transfer for Spheres
27(2)
1.4.2 Inertia Effects, Higher Res
29(2)
1.4.3 Blowing Effects
31(1)
1.4.4 Transient Effects
32(4)
1.4.5 Turbulence Effects
36(1)
1.4.6 Heat Transfer from Irregularly Shaped Particles
37(1)
1.4.7 Rarefaction and Interface Temperature Discontinuity Effects
38(1)
1.4.8 Radiation Effects
39(1)
1.4.9 Temperature Measurements
40(2)
Bibliography
42(5)
2 Numerical Modeling and Simulations
47(42)
2.1 Multiphase and Particulate Modeling
47(3)
2.1.1 Desired Attributes of Models
49(1)
2.2 Classification of Particulate Flows
50(3)
2.2.1 One-Way Coupling
50(1)
2.2.2 Two-Way Coupling
51(1)
2.2.3 Three-Way Coupling
51(1)
2.2.4 Four-Way Coupling
52(1)
2.3 Modeling of the Carrier Phase: Governing Equations
53(5)
2.3.1 Laminar Flow
54(1)
2.3.2 Turbulent Flow
54(4)
2.3.3 Transitional Flows
58(1)
2.4 Modeling of Particulate Systems
58(19)
2.4.1 Eulerian Homogeneous Model
59(1)
2.4.2 Eulerian, Two-Fluid Model
60(2)
2.4.3 Lagrangian, Point-Source Model
62(2)
2.4.4 Lagrangian, Resolved-Particle Model
64(2)
2.4.5 The Probability Distribution Function Model
66(2)
2.4.6 Particle Collisions
68(6)
2.4.7 Droplet Collisions and Coalescence
74(2)
2.4.8 Heat Transfer During Collisions
76(1)
2.5 The Treatment of Particle Boundaries
77(12)
2.5.1 Body-Fitted Coordinates
77(2)
2.5.2 The Front-Tracking Method
79(1)
2.5.3 The Lattice Boltzmann Method
80(2)
2.5.4 The Immersed Boundary Method
82(3)
2.5.5 Application of the IBM to Heat Transfer
85(1)
Bibliography
86(3)
3 Fluidized Bed Reactors
89(32)
3.1 Types of FBRs and Air Distributors
92(1)
3.2 Basics of the Operation of FBRs
93(5)
3.2.1 Fluidization Regimes
94(2)
3.2.2 Minimum Fluidization Velocity
96(2)
3.3 Heat Transfer in FBRs
98(5)
3.4 Industrial Types of FBRs: Applications
103(12)
3.4.1 Catalytic Cracking
104(2)
3.4.2 Catalytic Synthesis
106(2)
3.4.3 Thermal Cracking and Coking
108(1)
3.4.4 Fluidized Bed Combustors
109(2)
3.4.5 Other Chemical Applications
111(2)
3.4.6 Nonchemical Applications
113(2)
3.5 Computer Modeling: The MFIX Code
115(6)
3.5.1 The MFIX Numerical Code
117(2)
Bibliography
119(2)
4 Heat Transfer with Nanofluids
121(44)
4.1 Introduction
121(1)
4.2 Continuum and Molecular Considerations
122(2)
4.3 Characteristics of Nanofluids
124(10)
4.3.1 Surface-to-Volume Ratio
125(1)
4.3.2 Brownian Motion
125(3)
4.3.3 Thermophoresis
128(2)
4.3.4 Electrical Double Layer, Zeta Potential, and Electrophoresis
130(2)
4.3.5 Aggregation and Separation of Particles
132(2)
4.4 Thermodynamic Properties
134(3)
4.5 Transport Properties
137(19)
4.5.1 Viscosity of Nanofluids
138(6)
4.5.2 Thermal Conductivity
144(7)
4.5.3 Heat Transfer Coefficients
151(5)
4.6 Concluding Remarks
156(9)
Bibliography
158(7)
Index 165
Efstathios E. (Stathis) Michaelides, Texas Christian University, e.michaelides@tcu.edu