Muutke küpsiste eelistusi

Heterogeneous Cellular Networks: Theory, Simulation and Deployment [Kõva köide]

Edited by (University of Sheffield), Edited by , Edited by , Edited by
  • Formaat: Hardback, 494 pages, kõrgus x laius x paksus: 253x177x26 mm, kaal: 1140 g, 70 Tables, black and white; 140 Line drawings, black and white
  • Ilmumisaeg: 23-May-2013
  • Kirjastus: Cambridge University Press
  • ISBN-10: 1107023092
  • ISBN-13: 9781107023093
  • Formaat: Hardback, 494 pages, kõrgus x laius x paksus: 253x177x26 mm, kaal: 1140 g, 70 Tables, black and white; 140 Line drawings, black and white
  • Ilmumisaeg: 23-May-2013
  • Kirjastus: Cambridge University Press
  • ISBN-10: 1107023092
  • ISBN-13: 9781107023093
"This detailed, up-to-date introduction to heterogeneous cellular networking introduces its characteristic features, the technology underpinning it, and the issues surrounding its use. Comprehensive and in-depth coverage of core topics catalogs the most advanced, innovative technologies used in designing and deploying heterogenous cellular networks, including system-level simulation and evaluation, self-organization, range expansion, cooperative relaying, network MIMO, network coding, and cognitive radio. Practical design considerations and engineering tradeoffs are also discussed in detail, including handover management, energy efficiency, and interference management techniques. A range of real-world case studies, provided by industrial partners, illustrates the latest trends in heterogenous cellular network development. Written by leading figures from industry and academia, this is an invaluable resource for all researchers and practitioners working in the field of mobile communications"--

Muu info

A detailed, up-to-date introduction to heterogeneous cellular networking, including discussion of practical design considerations and industry case studies.
Acknowledgments xvi
Forewords xix
Preface xxii
List of contributors
xxvii
Acronyms xxx
1 Introduction
1(14)
Xiaoli Chu
David Lopez-Perez
Fredrik Gunnarsson
Yang Yang
1.1 Mobile data explosion and capacity needs
1(2)
1.2 Capacity and coverage solutions
3(2)
1.2.1 Improving existing macrocell networks
4(1)
1.2.2 Network base station densification
4(1)
1.2.3 Indoor capacity and coverage
4(1)
1.2.4 Heterogeneous cellular networks
5(1)
1.3 Heterogeneous cellular network nodes
5(2)
1.3.1 Remote radio heads
6(1)
1.3.2 Micro base stations
6(1)
1.3.3 Pico base stations
6(1)
1.3.4 Femtocell access points
7(1)
1.3.5 Relay nodes
7(1)
1.4 3GPP LTE-Advanced heterogeneous cellular networks
7(1)
1.5 Heterogeneous cellular network challenges
8(7)
1.5.1 Optimal network evolution path
8(1)
1.5.2 Access control
9(1)
1.5.3 Mobility and handover
9(1)
1.5.4 Self-organizing networks
10(1)
1.5.5 Intercell interference
10(1)
1.5.6 Intersite coordination
11(1)
1.5.7 Energy efficiency
12(1)
1.5.8 Backhaul
12(1)
References
13(2)
2 Radio propagation modeling
15(42)
Zhihua Lai
Guillaume Villemaud
Meiling Luo
Jie Zhang
2.1 Introduction
15(1)
2.2 Different types of propagation model
16(24)
2.2.1 Empirical models
17(2)
2.2.2 Deterministic models
19(14)
2.2.3 Semi-deterministic models
33(6)
2.2.4 Hybrid models
39(1)
2.3 Clutter and terrain
40(1)
2.4 Antenna radiation pattern
41(1)
2.5 Calibration
42(1)
2.6 MIMO channel models
42(10)
2.6.1 Geometry-based stochastic channel models
44(2)
2.6.2 3GPP SCM and WINNER I model
46(1)
2.6.3 WINNER II model
47(1)
2.6.4 COST 259/273/2100 MIMO channel models
48(3)
2.6.5 Perspectives of channel modeling
51(1)
2.7 Summary and conclusions
52(5)
References
52(5)
3 System-level simulation and evaluation models
57(30)
David Lopez-Perez
Mats Folke
3.1 Introduction
57(1)
3.2 System-level simulation
58(1)
3.3 Static versus dynamic system-level simulations
59(1)
3.3.1 Static snapshot-based approaches
59(1)
3.3.2 Dynamic event-driven approaches
60(1)
3.4 Building blocks
60(11)
3.4.1 Wrap-around
60(2)
3.4.2 Shadow fading: auto- and cross-correlation
62(3)
3.4.3 Multi-path fading: International Telecommunication Union (ITU) and Typical Urban (TU) models
65(3)
3.4.4 Antenna patterns
68(2)
3.4.5 Signal quality: maximal ratio combining (MRC) and exponential effective SINR mapping (EESM)
70(1)
3.5 3GPP reference system deployments and evaluation assumptions
71(7)
3.5.1 Homogeneous deployments
72(1)
3.5.2 Heterogeneous deployments
73(5)
3.6 Placing of low-power nodes and users
78(4)
3.6.1 Macrocells overlaid with indoor or outdoor picocells or relays
78(2)
3.6.2 Macrocells overlaid with indoor femtocells
80(2)
3.7 Traffic modeling
82(1)
3.7.1 Full buffer model
82(1)
3.7.2 FTP model
83(1)
3.7.3 VolP model
83(1)
3.8 Mobility modeling
83(1)
3.9 Summary and conclusions
84(3)
Copyright notices
84(1)
References
85(2)
4 Access mechanisms
87(24)
Vikram Chandrasekhar
Anthony E. Ekpenyong
Ralf Bendlin
4.1 Introduction
87(1)
4.2 Access control modes
87(1)
4.3 Basics of the UMTS cellular architecture
88(4)
4.3.1 Core network
89(1)
4.3.2 Access network
89(1)
4.3.3 Radio protocol functions in UTRAN
90(2)
4.4 Basics of the LTE cellular architecture
92(3)
4.4.1 Evolved Packet Core (EPC)
92(1)
4.4.2 Access network
93(1)
4.4.3 Radio protocol functions in Evolved-UTRAN (E-UTRAN)
94(1)
4.5 LTE Release 8 mobility management to CSG cells
95(2)
4.5.1 Idle mode mobility to and from CSG cells
95(2)
4.5.2 Mobility to and from CSG cells in RRC_CONNECTED mode
97(1)
4.5.3 PCI confusion
97(1)
4.6 LTE Release 9 mobility enhancements to CSG cells and introduction of HA cells
97(4)
4.6.1 Hybrid access
99(1)
4.6.2 Access control, PCI confusion resolution and proximity indication
99(2)
4.7 LTE Release 10 and beyond: introduction of X2 interface for HeNBs
101(1)
4.8 Distinguishing features of UMTS access mechanisms
101(1)
4.9 Case study of access control in LTE
102(7)
4.9.1 Open access heterogeneous cellular network
103(3)
4.9.2 Closed access heterogeneous cellular network
106(3)
4.10 Conclusions
109(2)
Copyright notices
110(1)
References
110(1)
5 Interference modeling and spectrum allocation in two-tier networks
111(34)
Tony Q. S. Quek
Marios Kountouris
5.1 Introduction
111(2)
5.2 Interference modeling
113(4)
5.3 System model
117(4)
5.3.1 Two-tier network model
117(1)
5.3.2 Spectrum allocation
118(1)
5.3.3 Femtocell access
119(1)
5.3.4 Signal-to-interference ratio
120(1)
5.4 Downlink success probability
121(3)
5.4.1 Success probabilities with closed access femtocells
121(1)
5.4.2 Success probability with open access femtocells
122(2)
5.5 Two-tier downlink throughput optimization
124(5)
5.5.1 Downlink throughput analysis
124(1)
5.5.2 Network throughput optimization
125(1)
5.5.3 Optimal joint allocation with closed access femtocells
126(1)
5.5.4 Optimal disjoint allocation with closed access femtocells
126(2)
5.5.5 Optimal joint allocation with open access femtocells
128(1)
5.5.6 Optimal disjoint allocation with open access femtocells
129(1)
5.6 Numerical results
129(5)
5.7 Conclusion and future direction
134(1)
5.8 Appendix
134(11)
5.8.1 Derivation of fR(r)
134(1)
5.8.2 Proof of Lemma 5.1
135(1)
5.8.3 Proof of Lemma 5.2
136(2)
5.8.4 Proof of Lemma 5.4
138(1)
5.8.5 Proof of Lemma 5.5
139(1)
Copyright notice
140(1)
References
140(5)
6 Self-organization
145(34)
Fredrik Gunnarsson
6.1 Introduction
145(1)
6.2 Management architecture
146(1)
6.3 Self-configuration
147(4)
6.3.1 Planning
148(1)
6.3.2 Installation
149(2)
6.4 Self-optimization
151(19)
6.4.1 Automatic neighbor relation
152(4)
6.4.2 Automatic cell identity management
156(2)
6.4.3 Random access optimization
158(3)
6.4.4 Mobility robustness optimization
161(5)
6.4.5 Mobility load balancing
166(1)
6.4.6 Transmission power tuning
167(2)
6.4.7 Coverage and capacity optimization
169(1)
6.5 Self-healing
170(1)
6.6 Performance monitoring
171(2)
6.6.1 Minimization of drive tests
171(2)
6.6.2 Heterogeneous cellular network monitoring
173(1)
6.7 Summary and conclusions
173(6)
References
174(5)
7 Dynamic interference management
179(38)
Ismail Guvenc
Fredrik Gunnarsson
David Lopez-Perez
7.1 Excessive intercell interference
179(2)
7.1.1 Transmission power difference between nodes
180(1)
7.1.2 Low-power node range expansion
181(1)
7.1.3 Closed subscriber group access
181(1)
7.2 Range expansion
181(5)
7.2.1 Definition of range expansion
182(1)
7.2.2 Downlink/uplink coverage imbalance
183(1)
7.2.3 Behavior of range expansion
184(2)
7.3 Intercell interference coordination
186(1)
7.4 Frequency-domain intercell interference coordination
186(3)
7.4.1 Frequency-domain intercell interference coordination in LTE
187(1)
7.4.2 Carrier-based intercell interference coordination
187(2)
7.4.3 Uplink interferer identification
189(1)
7.5 Power-based intercell interference coordination
189(3)
7.5.1 Uplink power-based intercell interference coordination
190(1)
7.5.2 Downlink power-based intercell interference coordination
190(2)
7.6 Time-domain intercell interference coordination
192(7)
7.6.1 Almost blank subframes
194(2)
7.6.2 Almost blank subframes for range-expanded picocells
196(2)
7.6.3 Reduced-power subframes and UE interference cancellation
198(1)
7.7 Performance evaluations
199(13)
7.7.1 Power-based and time-domain intercell interference coordination
199(3)
7.7.2 Performance analysis for time-domain intercell interference coordination
202(2)
7.7.3 Coverage analysis for time-domain intercell interference coordination and range expansion
204(2)
7.7.4 Capacity analysis for time-domain intercell interference coordination and range expansion
206(3)
7.7.5 Reduced-power ABS and UE interference cancellation
209(3)
7.8 Summary and conclusions
212(5)
Copyright notices
212(1)
References
213(4)
8 Uncoordinated femtocell deployments
217(28)
David Lopez-Perez
Xiaoli Chu
Holger Claussen
8.1 Introduction
217(2)
8.2 Femtocell market
219(1)
8.3 Femtocell deployment scenarios
220(2)
8.4 The Small Cell Forum
222(2)
8.5 Backhaul
224(1)
8.6 Synchronization and localization
225(2)
8.7 Interference mitigation in femtocell networks
227(14)
8.7.1 Carrier allocation strategies
227(4)
8.7.2 Power-based techniques
231(5)
8.7.3 Antenna-based techniques
236(2)
8.7.4 Load-balancing-based techniques
238(1)
8.7.5 Frequency-based techniques
239(2)
8.8 Summary
241(4)
Copyright notices
241(1)
References
242(3)
9 Mobility and handover management
245(39)
Huaxia Chen
Shengyao Jin
Honglin Hu
Yang Yang
David Lopez-Porez
Ismail Guvenc
Xiaoli Chu
9.1 Introduction
245(1)
9.2 Mobility management in RRC-connected state
246(17)
9.2.1 Overview of the handover procedure in LTE systems
247(7)
9.2.2 Handover failures and ping-pongs
254(4)
9.2.3 Improved schemes for mobility management in RRC-connected state
258(5)
9.3 Mobility management in RRC-idle state
263(9)
9.3.1 Overview of cell selection/reselection procedure
263(3)
9.3.2 Improved schemes for mobility management in RRC-idle state
266(6)
9.4 Mobility management in heterogeneous cellular networks
272(9)
9.4.1 Range expansion, almost blank subframes, and HO performance
273(3)
9.4.2 HCN mobility performance with 3GPP Release-10 eICIC
276(3)
9.4.3 Mobility-based intercell interference coordination for HCNs
279(2)
9.5 Conclusion
281(3)
Copyright notices
281(1)
References
281(3)
10 Cooperative relaying
284(28)
Jing Xu
Jiang Wang
Ting Zhou
10.1 Relay function
285(8)
10.1.1 AF and DMF relay
285(2)
10.1.2 Throughput comparison
287(2)
10.1.3 Link adaptation of DMF relay
289(4)
10.2 Relay architecture in LTE-Advanced
293(5)
10.2.1 Interface and architecture
293(2)
10.2.2 Protocol stack
295(3)
10.3 Cooperative relaying
298(11)
10.3.1 Introduction
298(1)
10.3.2 Cooperative EF relay
299(4)
10.3.3 Joint network-channel coding for user cooperation
303(6)
10.4 Conclusion
309(3)
Acknowledgment
310(1)
Copyright notices
310(1)
References
310(2)
11 Network MIMO techniques
312(40)
Gan Zheng
Yongming Huang
Kai-Kit Wong
11.1 Introduction
312(1)
11.2 General principles of network MIMO
313(6)
11.2.1 Problems of single-cell processing
313(1)
11.2.2 Advantages of multi-cell processing
314(1)
11.2.3 Capacity results
315(3)
11.2.4 Categories of network MIMO
318(1)
11.3 Application scenarios of network MIMO in HCN
319(5)
11.3.1 Backhaul limit in HCN
321(1)
11.3.2 Clustering mechanism for HCNs
321(1)
11.3.3 CSI sharing
322(2)
11.4 Distributed downlink coordinated beamforming for macrocell network
324(13)
11.4.1 System model and problem formulation
324(2)
11.4.2 Distributed multi-cell beamforming based on interference leakage
326(1)
11.4.3 Distributed multi-cell beamforming based on max-min SINR
326(7)
11.4.4 Analysis of distributed implementation
333(1)
11.4.5 Simulation results
334(3)
11.5 Downlink coordinated beamforming applications in HCN
337(9)
11.5.1 System model
338(1)
11.5.2 Downlink multi-cell beamforming approaching Pareto optimality with max-min fairness
339(2)
11.5.3 Performance analysis
341(3)
11.5.4 Distributed implementation
344(1)
11.5.5 Simulation results
344(2)
11.6 The road ahead of network MIMO in HCN
346(2)
11.7 Summary and conclusions
348(4)
References
348(4)
12 Network coding
352(31)
Haishi Ning
Cong Ling
12.1 Introduction
352(1)
12.2 Coding opportunities in heterogenous cellular networks
352(12)
12.2.1 An upper bound on coding gain without geometry consideration
354(2)
12.2.2 An upper bound on coding gain with geometry consideration
356(1)
12.2.3 Generalized butterfly network
357(1)
12.2.4 Necessary condition for network coding gain
358(2)
12.2.5 Supporting examples
360(4)
12.3 Efficiency and reliability
364(14)
12.3.1 Issues of naive interference cancellation
367(1)
12.3.2 WNC-based partial interference cancellation strategy
368(1)
12.3.3 Practical considerations
369(1)
12.3.4 Diversity-multiplexing tradeoff analysis
370(8)
12.4 Construction of distributed coding solutions
378(2)
12.5 Summary and conclusion
380(3)
References
381(2)
13 Cognitive radio
383(43)
Miguel Lopez-Benitez
13.1 Introduction
383(2)
13.2 Cognitive radio techniques
385(24)
13.2.1 Spectrum awareness
386(9)
13.2.2 Spectrum selection
395(4)
13.2.3 Spectrum sharing
399(5)
13.2.4 Spectrum mobility
404(3)
13.2.5 Summary of cognitive radio techniques and cross-layer design
407(2)
13.3 Application scenarios for cognitive radio in heterogeneous cellular networks
409(6)
13.3.1 Rural broadband
410(1)
13.3.2 Dynamic backhaul
410(1)
13.3.3 Cognitive ad hoc networks
410(1)
13.3.4 Capacity extension in cellular networks
411(1)
13.3.5 Direct UE-to-UE communication in cellular networks
411(1)
13.3.6 Coordination and cognitive X2 links
412(1)
13.3.7 Cognitive femtocells
412(3)
13.4 Standardization activities: the future of cognitive radio systems
415(2)
13.5 Summary and conclusions
417(9)
References
418(8)
14 Energy-efficient architectures and techniques
426(27)
Weisi Guo
Min Chen
Athanasios V. Vasilakos
14.1 Introduction
426(3)
14.2 Green cellular projects and metrics
429(3)
14.2.1 Green cellular network projects
429(2)
14.2.2 A taxonomy of green metrics
431(1)
14.2.3 How green are cellular networks?
431(1)
14.3 Fundamental tradeoffs: capacity, energy, and cost
432(4)
14.3.1 Introduction
432(1)
14.3.2 Fundamental energy saving limits
433(1)
14.3.3 Maximum spectral and energy efficiency
433(1)
14.3.4 Maximum cost efficiency
434(2)
14.4 Green cellular network architectures
436(7)
14.4.1 Homogeneous deployment
438(1)
14.4.2 Heterogeneous deployment
438(5)
14.5 Green cellular transmission techniques
443(2)
14.5.1 MIMO techniques
443(1)
14.5.2 Interference reduction
444(1)
14.5.3 Scheduling
445(1)
14.6 Integrated heterogeneous cellular networks
445(2)
14.6.1 Flexible heterogeneous cellular networks
445(1)
14.6.2 Self-organizing networks
446(1)
14.7 Discussion
447(1)
14.7.1 Standardization of green cellular networks
447(1)
14.7.2 Pricing in green cellular networks
448(1)
14.7.3 New energy and materials
448(1)
14.8 Conclusion
448(5)
Copyright notices
449(1)
References
449(4)
Index 453
Xiaoli Chu is a Lecturer in the Department of Electronic and Electrical Engineering at the University of Sheffield. David Lopez-Perez is a Research Engineer at the Autonomous Networks and System Research Department of Bell Labs, Alcatel-Lucent, Dublin, working on wireless networking and small cells. Yang Yang is a Professor at the Shanghai Institute of Microsystem and Information Technology. Fredrik Gunnarsson is a Senior Specialist in radio network self-organising networks at Ericsson Research, and an Associate Professor in the Division of Automatic Control, Linköping University, Sweden.