Muutke küpsiste eelistusi

Heterogeneous Information Network Analysis and Applications Softcover reprint of the original 1st ed. 2017 [Pehme köide]

  • Formaat: Paperback / softback, 227 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, 53 Illustrations, color; 9 Illustrations, black and white; IX, 227 p. 62 illus., 53 illus. in color., 1 Paperback / softback
  • Sari: Data Analytics
  • Ilmumisaeg: 02-Aug-2018
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319858556
  • ISBN-13: 9783319858555
  • Pehme köide
  • Hind: 132,08 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 155,39 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 227 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, 53 Illustrations, color; 9 Illustrations, black and white; IX, 227 p. 62 illus., 53 illus. in color., 1 Paperback / softback
  • Sari: Data Analytics
  • Ilmumisaeg: 02-Aug-2018
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319858556
  • ISBN-13: 9783319858555
This book offers researchers an understanding of the fundamental issues and a good starting point to work on this rapidly expanding field. It provides a comprehensive survey of current developments of heterogeneous information network. It also presents the newest research in applications of heterogeneous information networks to similarity search, ranking, clustering, recommendation. 


This information will help researchers to understand how to analyze networked data with heterogeneous information networks. Common data mining tasks are explored, including similarity search, ranking, and recommendation. The book illustrates some prototypes which analyze networked data.


Professionals and academics working in data analytics, networks, machine learning, and data mining will find this content valuable. It is also suitable for advanced-level students in computer science who are interested in networking or pattern recognition. 




1. Introduction.-
2. Summarization of the developments.- 3.Uniform
relevance measure of heterogeneous objects.-
4. Path based Ranking.-
5.
Ranking based Clustering.-
6. Recommendation with heterogeneous information.-
7.  Information fusion with heterogeneous network.-
8. Prototype system.-
9.
Future research directions.-
10. Conclusion.