Muutke küpsiste eelistusi

Hierarchical Protection for Smart Grids [Kõva köide]

  • Formaat: Hardback, 475 pages, kõrgus x laius x paksus: 246x170x28 mm, kaal: 885 g
  • Ilmumisaeg: 19-Jun-2018
  • Kirjastus: Wiley-IEEE Press
  • ISBN-10: 1119304806
  • ISBN-13: 9781119304807
Teised raamatud teemal:
  • Formaat: Hardback, 475 pages, kõrgus x laius x paksus: 246x170x28 mm, kaal: 885 g
  • Ilmumisaeg: 19-Jun-2018
  • Kirjastus: Wiley-IEEE Press
  • ISBN-10: 1119304806
  • ISBN-13: 9781119304807
Teised raamatud teemal:
A systematic view of hierarchical protection for smart grids, with solutions to tradition protection problems and complicated operation modes of modern power systems

Systematically investigates traditional protection problems from the birds eye view of hierarchical protection

Focuses on multiple variable network structures and complicated operation modes

Offers comprehensive countermeasures on improving protection performance based on up-to-date research
About the Author ix
Foreword xi
Preface xiii
Introduction xv
1 Basic Theories of Power System Relay Protection
1(16)
1.1 Introduction
1(1)
1.2 Function of Relay Protection
1(2)
1.3 Basic Requirements of Relay Protection
3(3)
1.3.1 Reliability
3(1)
1.3.2 Selectivity
4(1)
1.3.3 Speed
4(1)
1.3.4 Sensitivity
5(1)
1.4 Basic Principles of Relay Protection
6(3)
1.4.1 Over-Current Protection
6(1)
1.4.2 Directional Current Protection
6(1)
1.4.3 Distance Protection
7(2)
1.5 Hierarchical Relay Protection
9(6)
1.5.1 Local Area Protection
10(1)
1.5.2 Substation Area Protection
11(1)
1.5.3 Wide Area Protection
12(1)
1.5.4 Constitution Mode of Hierarchical Relay Protection
13(2)
1.6 Summary
15(1)
References
15(2)
2 Local Area Conventional Protection
17(158)
2.1 Introduction
17(1)
2.2 Transformer Protection
18(64)
2.2.1 Adaptive Scheme of Discrimination between Internal Faults and Inrush Currents of Transformer Using Mathematical Morphology
18(12)
2.2.2 Algorithm to Discriminate Internal Fault Current and Inrush Current Utilizing the Variation Feature of Fundamental Current Amplitude
30(9)
2.2.3 Identifying Transformer Inrush Current Based on a Normalized Grille Curve (NGC)
39(11)
2.2.4 Adaptive Method to Identify CT Saturation Using Grille Fractal
50(7)
2.2.5 Algorithm for Discrimination Between Inrush Currents and Internal Faults Based on Equivalent Instantaneous Leakage Inductance
57(13)
2.2.6 A Two-Terminal, Network-Based Method for Discrimination between Internal Faults and Inrush Currents
70(12)
2.3 Transmission Line Protection
82(90)
2.3.1 Line Protection Scheme for Single-Phase-to-Ground Faults Based on Voltage Phase Comparison
83(16)
2.3.2 Adaptive Distance Protection Scheme Based on the Voltage Drop Equation
99(18)
2.3.3 Location Method for Inter-Line and Grounded Faults of Double-Circuit Transmission Lines Based on Distributed Parameters
117(17)
2.3.4 Adaptive Overload Identification Method Based on the Complex Phasor Plane
134(14)
2.3.5 Novel Fault Phase Selection Scheme Utilizing Fault Phase Selection Factors
148(24)
2.4 Summary
172(1)
References
172(3)
3 Local Area Protection for Renewable Energy
175(98)
3.1 Introduction
175(1)
3.2 Fault Transient Characteristics of Renewable Energy Sources
176(54)
3.2.1 Mathematical Model and LVRT Characteristics of the DFIG
177(1)
3.2.2 DFIG Fault Transient Characteristics When Crowbar Protection Is Not Put into Operation
178(33)
3.2.3 DFIG Fault Transient Characteristics When Crowbar Protection Is Put into Operation
211(19)
3.3 Local Area Protection for Centralized Renewable Energy
230(18)
3.3.1 Connection Form of a Wind Farm and its Protection Configuration
231(2)
3.3.2 Adaptive Distance Protection Scheme for Wind Farm Collector Lines
233(6)
3.3.3 Differential Protection Scheme for Wind Farm Outgoing Transmission Line
239(9)
3.4 Local Area Protection for Distributed Renewable Energy
248(21)
3.4.1 Adaptive Protection Approach for a Distribution Network Containing Distributed Generation
248(7)
3.4.2 Islanding Detection Method
255(14)
3.5 Summary
269(1)
References
270(3)
4 Topology Analysis
273(44)
4.1 Introduction
273(1)
4.2 Topology Analysis for the Inner Substation
273(11)
4.2.1 Characteristic Analysis of the Main Electrical Connection
274(1)
4.2.2 Topology Analysis Method Based on Main Electrical Wiring Characteristics
275(3)
4.2.3 Scheme Verification
278(6)
4.3 Topology Analysis for Inter-substation
284(10)
4.3.1 Static Topology Analysis for Power Network
285(2)
4.3.2 Topology Update for a Power Network
287(4)
4.3.3 Scheme Verification
291(3)
4.4 False Topology Identification
294(21)
4.4.1 Road-Loop Equation
294(2)
4.4.2 Analysis of the Impacts of Topology Error and Undesirable Data on the Branch Current
296(4)
4.4.3 Topology Error Identification Method Based on the Road-Loop Equation
300(1)
4.4.4 Scheme Verification
301(14)
4.5 Summary
315(1)
References
316(1)
5 Substation Area Protection
317(30)
5.1 Introduction
317(1)
5.2 Substation Area Protection Based on Electrical Information
317(10)
5.2.1 Substation Area Regionalization
318(5)
5.2.2 Typical Fault Cases
323(3)
5.2.3 Scheme Performance Analysis
326(1)
5.3 Substation Area Protection Based on Operating Signals
327(19)
5.3.1 Setting Principle of Adaptive Current Protection
327(3)
5.3.2 Supporting Degree Calculation Method
330(4)
5.3.3 Substation Area Current Protection Algorithm
334(4)
5.3.4 Scheme Verification
338(8)
5.4 Summary
346(1)
References
346(1)
6 Wide Area Protection
347(88)
6.1 Introduction
347(1)
6.2 Wide Area Protection Using Electrical Information
347(28)
6.2.1 Wide Area Protection Using Fault Power Source Information
348(10)
6.2.2 Wide Area Protection Using Fault Network Information
358(11)
6.2.3 Wide Area Protection Suitable for Multiple Fault Identification
369(6)
6.3 Wide Area Protection Using Operating Signals
375(104)
6.3.1 Wide Area Protection Based on the Distance Protection Operational Signal
376(17)
6.3.2 Wide Area Protection Based on the Current Protection Operational Signal
393(13)
6.3.3 Wide Area Protection Based on the Virtual Impedance of the Fault Component
406(73)
6.4 Wide Area Tripping Strategy
419(1)
6.4.1 Tripping Strategy Based on Directional Weighting
419(9)
6.4.2 Simulation Verification
428(4)
6.5 Summary
432(1)
References
433(2)
Appendices 435(4)
Index 439
Zengping Wang and Jing Ma, North China Electric Power University, Beijing, China