Preface |
|
ix | |
|
I Motivation And The Basics |
|
|
|
|
3 | (18) |
|
1.1 Least Squares and Regularized Regression |
|
|
4 | (2) |
|
1.2 Lasso: Survival of the Bigger |
|
|
6 | (3) |
|
1.3 Thresholding the Sample Covariance Matrix |
|
|
9 | (1) |
|
1.4 Sparse PCA and Regression |
|
|
10 | (3) |
|
1.5 Graphical Models: Nodewise Regression |
|
|
13 | (1) |
|
1.6 Cholesky Decomposition and Regression |
|
|
13 | (2) |
|
1.7 The Bigger Picture: Latent Factor Models |
|
|
15 | (2) |
|
|
17 | (4) |
|
2 Data, Sparsity, And Regularization |
|
|
21 | (24) |
|
2.1 Data Matrix: Examples |
|
|
22 | (4) |
|
2.2 Shrinking the Sample Covariance Matrix |
|
|
26 | (3) |
|
2.3 Distribution of the Sample Eigenvalues |
|
|
29 | (1) |
|
2.4 Regularizing Covariances Like a Mean |
|
|
30 | (2) |
|
|
32 | (4) |
|
2.6 Lasso: Variable Selection and Prediction |
|
|
36 | (1) |
|
2.7 Lasso: Degrees of Freedom and BIC |
|
|
37 | (1) |
|
2.8 Some Alternatives to the Lasso Penalty |
|
|
38 | (7) |
|
|
45 | (54) |
|
3.1 Definition and Basic Properties |
|
|
45 | (4) |
|
3.2 The Spectral Decomposition |
|
|
49 | (4) |
|
3.3 Structured Covariance Matrices |
|
|
53 | (3) |
|
3.4 Functions of a Covariance Matrix |
|
|
56 | (5) |
|
3.5 PCA: The Maximum Variance Property |
|
|
61 | (2) |
|
3.6 Modified Cholesky Decomposition |
|
|
63 | (4) |
|
|
67 | (6) |
|
3.8 GLM for Covariance Matrices |
|
|
73 | (3) |
|
3.9 GLM via the Cholesky Decomposition |
|
|
76 | (3) |
|
3.10 GLM for Incomplete Longitudinal Data |
|
|
79 | (5) |
|
3.10.1 The Incoherency Problem in Incomplete Longitudinal Data |
|
|
79 | (2) |
|
3.10.2 The Incomplete Data and The EM Algorithm |
|
|
81 | (3) |
|
3.11 A Data Example: Fruit Fly Mortality Rate |
|
|
84 | (5) |
|
3.12 Simulating Random Correlation Matrices |
|
|
89 | (2) |
|
3.13 Bayesian Analysis of Covariance Matrices |
|
|
91 | (8) |
|
II Covariance Estimation: Regularization |
|
|
|
4 Regularizing The Eigenstructure |
|
|
99 | (22) |
|
4.1 Shrinking the Eigenvalues |
|
|
100 | (5) |
|
4.2 Regularizing The Eigenvectors |
|
|
105 | (2) |
|
4.3 A Duality between PCA and SVD |
|
|
107 | (3) |
|
4.4 Implementing Sparse PCA: A Data Example |
|
|
110 | (2) |
|
4.5 Sparse Singular Value Decomposition (SSVD) |
|
|
112 | (2) |
|
|
114 | (4) |
|
4.7 Principal Subspace Estimation |
|
|
118 | (1) |
|
|
119 | (2) |
|
5 Sparse Gaussian Graphical Models |
|
|
121 | (20) |
|
5.1 Covariance Selection Models: Two Examples |
|
|
122 | (2) |
|
5.2 Regression Interpretation of Entries of Σ-1 |
|
|
124 | (2) |
|
5.3 Penalized Likelihood and Graphical Lasso |
|
|
126 | (5) |
|
5.4 Penalized Quasi-Likelihood Formulation |
|
|
131 | (1) |
|
5.5 Penalizing the Cholesky Factor |
|
|
132 | (4) |
|
5.6 Consistency and Sparsistency |
|
|
136 | (1) |
|
5.7 Joint Graphical Models |
|
|
137 | (2) |
|
|
139 | (2) |
|
6 Banding, Tapering, And Thresholding |
|
|
141 | (12) |
|
6.1 Banding the Sample Covariance Matrix |
|
|
142 | (2) |
|
6.2 Tapering the Sample Covariance Matrix |
|
|
144 | (1) |
|
6.3 Thresholding the Sample Covariance Matrix |
|
|
145 | (4) |
|
6.4 Low-Rank Plus Sparse Covariance Matrices |
|
|
149 | (1) |
|
|
150 | (3) |
|
7 Multivariate Regression: Accounting For Correlation |
|
|
153 | (18) |
|
7.1 Multivariate Regression and LS Estimators |
|
|
154 | (2) |
|
7.2 Reduced Rank Regressions (RRR) |
|
|
156 | (2) |
|
7.3 Regularized Estimation of B |
|
|
158 | (2) |
|
7.4 Joint Regularization of (B, Ω) |
|
|
160 | (3) |
|
7.5 Implementing MRCE: Data Examples |
|
|
163 | (4) |
|
7.5.1 Intraday Electricity Prices |
|
|
163 | (2) |
|
7.5.2 Predicting Asset Returns |
|
|
165 | (2) |
|
|
167 | (4) |
Bibliography |
|
171 | (10) |
Index |
|
181 | |