Muutke küpsiste eelistusi

High-Dimensional Covariance Matrix Estimation: An Introduction to Random Matrix Theory 1st ed. 2021 [Pehme köide]

  • Formaat: Paperback / softback, 115 pages, kõrgus x laius: 235x155 mm, kaal: 215 g, 26 Illustrations, color; XIV, 115 p. 26 illus. in color., 1 Paperback / softback
  • Sari: SpringerBriefs in Applied Statistics and Econometrics
  • Ilmumisaeg: 30-Oct-2021
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030800644
  • ISBN-13: 9783030800642
Teised raamatud teemal:
  • Pehme köide
  • Hind: 67,23 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 79,09 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 115 pages, kõrgus x laius: 235x155 mm, kaal: 215 g, 26 Illustrations, color; XIV, 115 p. 26 illus. in color., 1 Paperback / softback
  • Sari: SpringerBriefs in Applied Statistics and Econometrics
  • Ilmumisaeg: 30-Oct-2021
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030800644
  • ISBN-13: 9783030800642
Teised raamatud teemal:
This book presents covariance matrix estimation and related aspects of random matrix theory. It focuses on the sample covariance matrix estimator and provides a holistic description of its properties under two asymptotic regimes: the traditional one, and the high-dimensional regime that better fits the big data context. It draws attention to the deficiencies of standard statistical tools when used in the high-dimensional setting, and introduces the basic concepts and major results related to spectral statistics and random matrix theory under high-dimensional asymptotics in an understandable and reader-friendly way. The aim of this book is to inspire applied statisticians, econometricians, and machine learning practitioners who analyze high-dimensional data to apply the recent developments in their work.

Foreword.- 1 Introduction.- 2 Traditional Estimators and Standard Asymptotics.- 3 Finite Sample Performance of Traditional Estimators.- 4 Traditional Estimators and High-Dimensional Asymptotics.- 5 Summary and Outlook.- Appendices.

Aygul Zagidullina received her Ph.D. in Quantitative Economics and Finance from the University of Konstanz, Germany, with a specialization in the areas of financial econometrics and statistical modeling. Her research interests include estimation of high-dimensional covariance matrices, machine learning, factor models and neural networks.