Muutke küpsiste eelistusi

High-Efficient Low-Cost Photovoltaics: Recent Developments 2009 ed. [Kõva köide]

  • Formaat: Hardback, 228 pages, kõrgus x laius: 235x155 mm, kaal: 541 g, XVII, 228 p., 1 Hardback
  • Sari: Springer Series in Optical Sciences 140
  • Ilmumisaeg: 20-Nov-2008
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540793585
  • ISBN-13: 9783540793588
Teised raamatud teemal:
  • Kõva köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 228 pages, kõrgus x laius: 235x155 mm, kaal: 541 g, XVII, 228 p., 1 Hardback
  • Sari: Springer Series in Optical Sciences 140
  • Ilmumisaeg: 20-Nov-2008
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540793585
  • ISBN-13: 9783540793588
Teised raamatud teemal:
A bird's-eye view of the development and problems of recent photovoltaic cells and systems and prospects for Si feedstock is presented.



High-efficient low-cost PV modules, making use of novel efficient solar cells (based on c-Si or III-V materials), and low cost solar concentrators are in the focus of this book.



Recent developments of organic photovoltaics, which is expected to overcome its difficulties and to enter the market soon, are also included.
Preface v
List of Contributors
xv
Milestones of Solar Conversion and Photovoltaics
1(6)
V. Petrova-Koch
Prehistory
1(1)
Milestones of Photovoltaics
1(6)
From Extraterrestrial to Terrestrial Applications
7(22)
G. F. X. Strobl
G. LaRoche
K.-D. Rasch
G. Hey
Introduction
7(1)
Solar Cells for Space
8(2)
Closer to the Limit
10(11)
Material Quality
11(1)
Back Surface Reflector (BSR)
12(1)
Back Surface Field (BSF)
12(1)
The Violet Cell [ 10]
13(1)
Textured Surfaces
13(1)
Contacts
14(1)
Bypass Function [ 13]
14(1)
Surface Passivation
14(1)
Low-Intensity, Low-Temperature Operation
14(1)
Solar Cell Assembly
15(1)
High Efficiency Solar Cells
15(6)
Cost Reduction Measures
21(1)
Silicon Production
21(1)
Bulk Material
21(1)
Cell Contacts
21(1)
Encapsulation
22(1)
Concentrating Systems - A New Opportunity for High Efficiency Space Solar Cells
22(7)
References
25(4)
PV Solar Electricity: From a Niche Market to One of the Most Important Mainstream Markets for Electricity
29(16)
W. Hoffmann
L. Waldmann
General Overview
29(2)
PV Solar Electricity Market History
31(2)
Price and Competitiveness of PV Solar Electricity
33(5)
Future Market Development
38(1)
Technology Evolution
39(6)
References
43(2)
Advanced Solar-Grade Si Material
45(10)
K. Hesse
Introduction
45(1)
Production Pathways for Solar Silicon Feedstock
45(8)
Metallurgical Grade Silicon: Carbothermic Reduction of Silica as a Starting Point for Most Pathways
45(1)
Established Production Methods: Purification of Metallurgical Silicon via the ``Silane Route'' is Dominating
46(1)
Differences in Using TCS or Silane as Feedstock
47(3)
Accommodation of the Processes to the PV Requirements
50(2)
The Myths of the ``High-Energy/High-Cost'' Rating of Established Silane-Based Polysilicon Deposition Technologies
52(1)
Alternative Technologies for the Production of Solar-Grade Feedstock: Purification of Metallurgical Silicon via Melt Treatment/Crystallization is Dominating
53(1)
Alternative Vapor-Phase Deposition Technologies?
53(1)
Time to Market
53(1)
Summary
53(2)
References
54(1)
EFG Ribbon Technology
55(10)
I.A. Schwirtlich
Introduction
55(1)
EFG process
55(10)
A Novel High-Efficiency Rear-Contact Solar Cell with Bifacial Sensitivity
65(30)
R. Hezel
Introduction
65(2)
Structure of the Bifacial Rear-Contact Solar Cell
67(1)
High-Efficiency and Low-Cost Production Features
68(1)
Inherent Passivation of the Base Contacts
69(1)
Processing Sequence
70(1)
Production Technology
71(10)
Back-Surface Grooving
71(1)
Metallization by Oblique Evaporation
72(3)
Surface Passivation by PECVD Silicon Nitride
75(5)
Interconnection Technology Based on Conductive Adhesives
80(1)
Cell Results
81(1)
Efficiency Perspectives
82(2)
Silicon Substrate Options
84(2)
Application of Bifacial Solar Cells
86(4)
General Applications of Bifacial Flat Panels
86(1)
Integration of Bifacial PV Modules in Low-Cost Concentrating Systems
87(1)
Multifunctional Bifacial PV Elements
88(2)
Conclusions
90(5)
References
91(4)
Commercial High-Efficiency Silicon Solar Cells
95(6)
R. Hezel
Introduction
95(1)
The Point-Contact Solar Cell
95(2)
The HIT Solar Cell
97(1)
The Buried-Contact Solar Cell
98(3)
References
99(2)
III-V Solar Cells and Concentrator Arrays
101(42)
Z.I. Alferov
V.M. Andreev
V.D. Rumyantsev
Introduction: Early History of Heterostructures and III-V Solar Cells
101(4)
Single-Junction AlGaAs/GaAs Concentrator Solar Cells
105(4)
Multijunction Solar Cells
109(11)
GaInP/GaAs Dual-Junction Solar Cells
110(4)
Hybrid Triple-Junction GaInP/GaAs-GaSb Monolithic/Mechanically Stacked Solar Cells
114(2)
Monolithic GaInP/Ga(In)As/Ge Triple-Junction Solar Cells
116(4)
Concentrator PV Modules and Installations with III-V Solar Cells
120(8)
Concentrator Modules with Mini-lens Panels: Design and Fabrication
124(3)
Outdoor Measurements of the Test Modules with Mini-lens Panels
127(1)
Perspectives of the Efficiency Increase in III-V Solar Cells
128(4)
Conclusion
132(11)
References
133(10)
The Economic Perspective: Is Concentrator PV Capable of Breaking the Economic Barrier
143(16)
E. W. Merkle
R. Tolle
M. Sturm
Climate Change and Depletion of Fossil fuels
143(4)
Photovoltaic as Part of Global Energy Trends
143(1)
Growth Perspective of Photovoltaic
144(3)
Cost Reduction as the Major Target
147(4)
Cost Potentials of the Current Technologies
147(1)
Thin-Film PV in Comparison to Crystalline Silicon PV: Advantages in Price, Performance and Large Size
148(1)
CPV in Comparison to Crystalline Silicon Flat-Plate PV
149(1)
Conclusion: Cost Potential to Reach ``Grid Parity''
149(2)
Meeting the Tremendous Growth Perspective
151(2)
Growth Beyond all Imagination
151(1)
Multi-GWp Capability
151(2)
The Market in 2030: Will There Be a Winning Technology?
153(1)
Cost Barriers for Leaving the Niche
153(2)
Explosive Growth of PV - Low Rate of Innovation
153(1)
High Growth at High Price Levels - the Problem of a Subsidized Industry
154(1)
Solar Energy: Abundant Quantity but Low Density
155(1)
The Learning Curve of CPV: Quick or Slow
155(4)
Concentration on the Strength Factors
155(1)
Learning from the LED and Photonic Industries
155(1)
Solar*Tec AG's Approach to CPV
156(2)
References
158(1)
Fluorescent Solar Energy Concentrators: Principle and Present State of Development
159(18)
A. Goetzberger
Principle
159(2)
Concentrator Stacks
161(2)
Light Guiding by Photonic Band Pass Mirrors
163(1)
Factors Determining Energy Efficiency of Fluorescent Concentrators
164(2)
Theoretical Limits of Concentration and Efficiency
166(2)
Limit of Concentration
166(1)
Limit of Efficiency
167(1)
Improvements of Basic Design
168(4)
Optical Concentrators at the Collector Output
168(1)
Combination of Fluorescent Collector with Large Area Si-Solar Cell
168(1)
Combination of Fluorescent Concentrator with Up-Conversion
169(2)
Combination of Collector Stack with Band Pass Mirror
171(1)
Experimental Results
172(5)
Results of the Initial Period
172(1)
Recent Experimental and Theoretical Work
173(2)
References
175(2)
Hybrid Photovoltaic/Thermal Collector Based on a Luminescent Concentrator
177(6)
V. Petrova-Koch
A. Goetzberger
Introduction
177(1)
PV/T Hybrid Collector Based on a Luminescent Concentrator
178(3)
Conclusions
181(2)
References
181(2)
Installation Concept and Future Applications
183(12)
O. Mayer
PV from the Customer Perspective
183(3)
PV Deployment Today
186(7)
Nondomestic Standalone Systems
186(1)
Domestic Standalone Systems
187(1)
Grid-Connected Central PV Systems
188(1)
Grid-Connected Decentral Systems
189(4)
PV Developments in the Future
193(2)
Design Rules for Efficient Organic Solar Cells
195(28)
Z. Zhu
D. Muhlbacher
M. Morana
M. Koppe
M.C. Scharber
D. Waller
G. Dennler
C.J. Brabec
Introduction
195(1)
Material Design Rules for Donors in Single-Junction Solar Cells
196(4)
Toward Novel Polymeric Donors: Poly-Cyclic-Bridged-DiThieno Copolymers (PCPDT)
200(9)
Structural and Optical Properties of PCPDT
201(2)
Transport and Electrical Properties of PCPDT-BT
203(6)
Photovoltaic Performance of PCPDT-Based Solar Cells
209(6)
From Single-Junction to Multijunction Solar Cells
215(4)
Summary
219(4)
References
220(3)
Index 223