Muutke küpsiste eelistusi

High-Pressure Shock Compression of Solids III 1998 ed. [Kõva köide]

Edited by , Edited by
  • Formaat: Hardback, 341 pages, kaal: 640 g, XIV, 341 p., 1 Hardback
  • Sari: Shock Wave and High Pressure Phenomena
  • Ilmumisaeg: 03-Apr-1998
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 0387982922
  • ISBN-13: 9780387982922
  • Kõva köide
  • Hind: 76,45 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 89,95 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 341 pages, kaal: 640 g, XIV, 341 p., 1 Hardback
  • Sari: Shock Wave and High Pressure Phenomena
  • Ilmumisaeg: 03-Apr-1998
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 0387982922
  • ISBN-13: 9780387982922
Developments in experimental methods are providing an increasingly detailed understanding of shock compression phenomena on the bulk, intermediate, and molecular scales. This third volume in a series of reviews of the curent state of knowledge covers several diverse areas. The first group of chapters addresses fundamental physical and chemical aspects of the response of condensed matter to shock comression: equations of state, molecular-dynamic analysis, deformation of materials, spectroscopic methods. Two further chapters focus on a particular group of materials: ceramics. Another chapter discusses shock-induced reaction of condensed-phase explosives. And a final pair of chapters considers shock phenomena at low stresses from the point of view of continuum mechanics.
Preface v(8) Contributors xiii CHAPTER 1 Equation of State at High Pressure 1(36) S.K. Sikka B.K. Godwal R. Chadambaram 1.1 Introduction 1(2) 1.2. General Considerations 3(8) 1.3. Some Results 11(19) 1.4. Summary 30(1) References 30(7) CHAPTER 2 Molecular Dynamics Analysis of Shock Phenomena 37(22) D.H. Robertson D.W. Brenner C.T. White 2.1. Introduction 37(1) 2.2. Model and Methods 38(3) 2.3. Nonenergetic A(2) Piston-Driven Simulations 41(5) 2.4. Energetic Chemically-Sustained Shock Waves 46(9) 2.5. Conclusions 55(1) Acknowledgments 56(1) References 56(3) CHAPTER 3 Mechanisms of Elastoplastic Response of Metals to Impact 59(22) C.S. Coffey 3.1. Introduction 59(1) 3.2. Dislocation Motion 60(7) 3.3. Plastic Strain Rate 67(2) 3.4. Comparison with Experiments 69(3) 3.5. High-Amplitude Shock Loading 72(1) 3.6. Elastic and Plastic Waves in Shocks 72(1) 3.7. Electroplastic Effects 73(1) 3.8. Impediments to Dislocation Motion and Crystal Failure 74(1) 3.9. Energy Dissipation by Moving Dislocations 75(3) 3.10. Conclusions 78(1) Acknowledgments 79(1) References 79(2) CHAPTER 4 Molecular Processes in a Shocked Explosive: Time-Resolved Spectroscopy of Liquid Nitromethane 81(20) G.I. Pangilinan Y.M. Gupta 4.1. Introduction 81(1) 4.2. Optical Spectroscopy Probes 82(3) 4.3. Shock Response of Nitromethane and Sensitized Nitromethane 85(12) 4.4. Summary and Conclusions 97(1) Acknowledgments 98(1) References 98(3) CHAPTER 5 Effects of Shock Compression on Ceramic Materials 101(46) Tsutomu Mashimo 5.1. Introduction 101(3) 5.2. Shock Compression Studies on Some Selected Ceramic Materials 104(20) 5.3. Yielding Mechanism and Correlation with Material Characterization 124(12) 5.4. Effects of Shock Compression on Shock-Induced Phase Transition 136(3) 5.5. Concluding Remarks 139(1) References 140(7) CHAPTER 6 Response of High-Strength Ceramics to Plane and Spherical Shock Waves 147(24) J. Cagnoux J.-Y. Tranchet 6.1. Introduction 147(1) 6.2. Elements of Experimental Strategy 148(1) 6.3. Uniaxial Deformation by a Plane Shock Wave 148(12) 6.4. Triaxial Deformation by a Divergent Spherical Wave 160(3) 6.5. Conclusions, Prospects, and Recommendations 163(3) References 166(5) CHAPTER 7 Initiation and Propagation of Detonation in Condensed-Phase High Explosives 171(70) Ray Engelke Stephen A. Sheffield 7.1. Introduction 171(3) 7.2. Brief History of Condensed-Phase Explosive Technology 174(2) 7.3. Planar Steady Detonation Theory 176(8) 7.4. Equations Governing Reactive Flow 184(13) 7.5. Initiation of Detonation 197(9) 7.6. 2D Steady Detonation in Homogeneous and Heterogeneous Materials 206(5) 7.7. Properties of High Explosives 211(9) 7.8. Initiation and Detonation Measurement Techniques 220(13) 7.9. Summary 233(1) 7.10. Glossary 234(1) Acknowledgments 235(1) References 235(6) CHAPTER 8 Analysis of Shock-Induced Damage in Fiber-Reinforced Composites 241(36) F.L. Addessio J.B. Aidun 8.1. Introduction 241(1) 8.2. Background 242(3) 8.3. Micromechanical Model 245(6) 8.4. Constitutive Models 251(9) 8.5. Numerical Implementation 260(5) 8.6. Computational Simulations 265(6) 8.7. Summary 271(2) Acknowledgments 273(1) References 273(4) CHAPTER 9 Attenuation of Longitudinal Elastoplastic Pulses 277(52) Lee Davison 9.1. Introduction 277(1) 9.2. Stress and Deformation Fields 278(1) 9.3. Longitudinal Shocks 279(2) 9.4. Material Response Model: Ideal Elastoplasticity at Small Strain 281(7) 9.5. Shock Propagation in a Slab 288(8) 9.6. Elastoplastic Pulse Attenuation 296(22) 9.7. Summary and Conclusions 318(1) 9.A. Appendix: Field Values for Pulse Attenuation in Range C 318(3) 9.B. Appendix: Field Values for Pulse Attenuation in Range D 321(2) 9.C. Appendix: Field Values for Pulse Attenuation in Range E 323(4) References 327(2) Author Index 329(10) Subject Index 339