Muutke küpsiste eelistusi

High Voltage Circuit Breakers: Design and Applications 2nd New edition [Kõva köide]

  • Formaat: Hardback, 460 pages, kõrgus x laius: 279x216 mm, kaal: 794 g, Contains 114 hardbacks
  • Sari: Electrical and Computer Engineering
  • Ilmumisaeg: 04-Jun-2002
  • Kirjastus: Marcel Dekker Inc
  • ISBN-10: 0824707990
  • ISBN-13: 9780824707996
  • Kõva köide
  • Hind: 203,05 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 460 pages, kõrgus x laius: 279x216 mm, kaal: 794 g, Contains 114 hardbacks
  • Sari: Electrical and Computer Engineering
  • Ilmumisaeg: 04-Jun-2002
  • Kirjastus: Marcel Dekker Inc
  • ISBN-10: 0824707990
  • ISBN-13: 9780824707996
This newly revised and updated reference presents sensible approaches to the design, selection, and usage of high-voltage circuit breakers-highlighting compliance issues concerning new and aging equipment to the evolving standards set forth by the American National Standards Institute and the International Electrotechnical Commission. This edition features the latest advances in mechanical and dielectric design and application from a simplified qualitative perspective. High Voltage Circuit Breakers: Design and Applications features new material on contact resistance, insulating film coatings, and fretting; temperature at the point of contact; short-time heating of copper; erosion and electromagnetic forces on contacts; closing speed and circuit breaker requirements; "weld" break and contact bounce; factors influencing dielectric strength; air, SF6, vacuum, and solid insulation; and dielectric loss and partial discharges, and includes updated chapters on capacitance switching; switching series and shunt reactors; temporary overvoltages; and the benefits of condition monitoring.
Preface to the Second Edition v
Preface to the First Edition vii
Electric Arc Fundamentals
1(26)
Introduction
1(1)
Basic Theory of Electrical Discharges
2(3)
Non-Self-Sustaining Discharges
2(2)
Self-Sustaining Discharges
4(1)
The Electric Arc
5(4)
High-Pressure Arcs
5(3)
Low-Pressure (Vacuum) Arcs
8(1)
The Alternating Current Arc
9(1)
The Current Interruption Process
10(8)
Interruption of Direct Current
11(2)
Interruption of Alternating Currents
13(5)
Review of Main Theories of AC Interruption
18(9)
Slepian's Theory
19(1)
Prince's Theory
20(1)
Cassie's Theory
21(1)
Mayr's Theory
22(1)
Browne's Combined Theory
23(1)
Modern Theories
24(1)
References
25(2)
Short Circuit Currents
27(48)
Introduction
27(1)
Characteristics of the Short Circuit Current
27(13)
Transient Direct Current Component
28(2)
The Volt--Time Area Concept
30(2)
Transient Alternating Current Components
32(2)
Asymmetry of Three-Phase Short Circuit Currents
34(2)
Measuring Asymmetrical Currents
36(4)
Calculation of Short Circuit Currents
40(10)
The Per Unit Method
40(8)
The MVA Method
48(2)
Unbalanced Faults
50(5)
Introduction to Symmetrical Components
51(4)
Forces Produced by the Short Circuit Currents
55(20)
Direction of the Forces Between Current Carrying Conductors
56(7)
Calculation of Electrodynamic Forces Between Conductors
63(6)
Forces on Conductors Produced by Three-Phase Currents
69(3)
References
72(3)
Transient Recovery Voltage
75(32)
Introduction
75(1)
Transient Recovery Voltage: General Concepts
76(7)
Basic Assumptions for TRV Calculations
78(1)
Current Injection Technique
78(1)
Traveling Waves and the Lattice Diagram
79(4)
Calculation of Transient Recovery Voltages
83(24)
Single Frequency Recovery Voltage
83(5)
Double Frequency Recovery Voltage: General Case
88(9)
Particular Case of Double Frequency Recovery Voltage
97(4)
Short-Line Fault Recovery Voltage
101(3)
Initial Transient Recovery Voltage
104(2)
References
106(1)
Switching Overvoltages
107(22)
Introduction
107(1)
Contacts Closing
108(6)
Closing of a Line
109(3)
Reclosing of a Line
112(1)
Energizing Unloaded Transformers
113(1)
Contact Opening
114(15)
Interruption of Small Capacitive Currents
115(2)
Interruption of Inductive Load Currents
117(2)
Current Chopping
119(3)
Virtual Current Chopping
122(2)
Temporary Overvoltages
124(1)
Controlling Overvoltages
125(1)
References
126(3)
Types of Circuit Breakers
129(68)
Introduction
129(1)
Circuit Breaker Classifications
130(4)
Circuit Breaker Types by Voltage Class
130(1)
Circuit Breaker Types by Installations
130(2)
Circuit Breaker Types by External Design
132(1)
Circuit Breaker Types by Interrupting Mediums
132(2)
Air Magnetic Circuit Breakers
134(7)
Arc Chute Type Circuit Breakers
135(6)
Air Magnetic Circuit Breaker Typical Applications
141(1)
Air Blast Circuit Breakers
141(8)
Blast Direction and Nozzle Types
142(3)
Series Connection of Interrupters
145(1)
Basic Interrupter Arrangements
146(1)
Parameters Influencing Air Blast Circuit Breaker Performance
146(3)
Oil Circuit Breakers
149(12)
Properties of Insulating Oil
150(1)
Current Interruption in Oil
150(2)
Types of Oil Circuit Breakers
152(4)
Bulk Oil Circuit Breakers
156(3)
Minimum Oil Circuit Breakers
159(2)
Sulfurhexafluoride
161(22)
Properties of SF6
162(2)
Arc Decomposed By-Products
164(1)
SF6 Environmental Considerations
165(2)
Recycling of SF6
167(1)
Current Interruption in SF6
168(2)
Two Pressure SF6 Circuit Breakers
170(2)
Single Pressure SF6 Circuit Breakers
172(4)
Pressure Increase of SF6 Produced by an Electric Arc
176(3)
Parameters Influencing SF6 Circuit Breaker Performance
179(3)
SF6-Nitrogen Gas Mixture
182(1)
Vacuum Circuit Breakers
183(14)
Current Interruption in Vacuum Circuit Breakers
184(6)
Vacuum Interrupter Construction
190(1)
Vacuum Interrupter Contact Materials
191(2)
Interrupting Capability of Vacuum Interrupters
193(1)
References
193(4)
Mechanical Design
197(32)
Introduction
197(1)
Contact Theory
198(14)
Contact Resistance
198(2)
Insulating Film Coatings on Contacts
200(2)
Contact Fretting
202(1)
Temperature at the Point of Contact
202(1)
Short Time Heating of Copper
203(2)
Electromagnetic Forces on Contacts
205(5)
Contact Erosion
210(2)
Mechanical Operating Characteristics
212(5)
Circuit Breaker Opening Requirements
212(4)
Closing Speed Requirements
216(1)
Operating Mechanisms
217(12)
Cam Versus Linkage
218(1)
Weld Break and Contact Bounce
219(1)
Spring Mechanisms
220(2)
Pneumatic Mechanisms
222(1)
Hydraulic Mechanisms
223(3)
Magnetic Mechanism
226(1)
References
227(2)
Dielectric Design
229(30)
Introduction
229(1)
Fundamentals of Dielectric Theory
230(9)
Electric Fields
230(9)
Types of Insulation
239(4)
Gaseous Insulation General Principles
239(1)
Paschen's Law
240(1)
Factors Influencing Dielectric Strength
241(2)
Air Insulation
243(1)
SF6 Insulation
244(3)
Simplified Design Approach
246(1)
Vacuum Insulation
247(1)
Solid Insulation
248(11)
Solid Insulation: Basic Concepts
249(1)
Dielectric Loss
250(1)
Layered Insulation
251(1)
Partial Discharges
252(1)
Insulating Materials
253(3)
Solid Insulation Design Guidelines
256(1)
References
257(2)
A Comparison of High Voltage Circuit Breaker Standards
259(36)
Introduction
259(1)
Recognized Standards Organizations
260(6)
ANSI/IEEE/NEMA
260(4)
International Electrotechnical Commission (IEC)
264(2)
Circuit Breaker Standards and Ratings Comparisons
266(1)
Normal Operating Conditions
266(1)
Rated Power Frequency
267(1)
Voltage Related Ratings
267(15)
Maximum Operating Voltage
267(2)
Rated Voltage Range Factor K
269(1)
Rated Dielectric Strength
269(7)
Rated Transient Recovery Voltage
276(6)
Current Related Ratings and Requirements
282(8)
Preferred Number Series
282(1)
Rated Continuous Current
282(3)
Rated Short Circuit Current
285(5)
Additional Switching Duties
290(2)
Capacitance Switching
290(2)
Mechanical Requirements
292(3)
Mechanical Operating Life
292(1)
References
293(2)
Short Circuit Testing
295(34)
Introduction
295(2)
Test Methodology
297(14)
Direct Tests
301(1)
Indirect Tests
302(1)
Single Phase Tests
302(2)
Unit Tests
304(1)
Two Part Tests
305(1)
Synthetic Tests
306(5)
Test Measurements and Procedures
311(18)
Measured Parameters and Test Set-Up
312(2)
Test Sequences
314(13)
References
327(2)
Circuit Breaker Applications
329(52)
Introduction
329(1)
Overload Currents and Temperature Rise
330(5)
Effects of Solar Radiation
331(1)
Continuous Overload Capability
332(1)
Short Time Overloads
333(2)
Maximum Continuous Current at High Altitude Applications
335(1)
Interruption of Current from High X/R Circuits
335(10)
Generator Circuit Breaker Applications
345(8)
Short Circuit Current Ratings
345(6)
Generator Asymmetrical Short Circuit Current Calculation
351(1)
Transient Recovery Voltage
352(1)
Application Frequencies Other Than 50 or 60 Hertz
353(1)
Capacitance Switching Applications
354(14)
Open Line
356(2)
Isolated Cable
358(1)
Back-to-Back Cables
358(2)
Isolated Shunt Capacitor Bank
360(3)
Back-to-Back Capacitor Banks
363(1)
General Application Guidelines
363
Circuit Breaker Characteristics
357(11)
Reactor Current Switching, High TRV Applications
368(1)
Ferroresonance
369(1)
High Altitude Dielectric Considerations
370(2)
Reclosing Duty Derating Factors
372(1)
Vacuum Circuit Breaker Applications
373(6)
Transformer Circuits
375(1)
Applications in Motor Circuits
376(2)
Review of Surge Protection Methods
378(1)
Choosing Between Vacuum or SF6
379(2)
References
379(2)
Synchronous Switching and Condition Monitoring
381(38)
Introduction
381(1)
Synchronous Switching
382(16)
Mechanical Performance Considerations
382(3)
Contact Gap Voltage Withstand
385(1)
Synchronous Capacitance Switching
386(5)
Synchronous Reactor Switching
391(2)
Synchronous Transformer Switching
393(1)
Synchronous Short Circuit Current Switching
394(4)
Condition Monitoring of Circuit Breakers
398(12)
Choice of Monitored Parameters
400(1)
Mechanical Parameters
401(6)
Electrical Parameters
407(3)
Monitored Parameters Selection Analysis
410(3)
Monitored Signals Management
413(1)
Cost--Benefit Analysis
414(5)
References
417(2)
Appendix: Conversion Tables 419(6)
Index 425