Muutke küpsiste eelistusi

Hilbert Schemes of Points and Infinite Dimensional Lie Algebras [Kõva köide]

  • Formaat: Hardback, 336 pages, kõrgus x laius: 254x178 mm, kaal: 765 g
  • Sari: Mathematical Surveys and Monographs
  • Ilmumisaeg: 30-Mar-2018
  • Kirjastus: American Mathematical Society
  • ISBN-10: 1470441888
  • ISBN-13: 9781470441883
Teised raamatud teemal:
  • Formaat: Hardback, 336 pages, kõrgus x laius: 254x178 mm, kaal: 765 g
  • Sari: Mathematical Surveys and Monographs
  • Ilmumisaeg: 30-Mar-2018
  • Kirjastus: American Mathematical Society
  • ISBN-10: 1470441888
  • ISBN-13: 9781470441883
Teised raamatud teemal:
Hilbert schemes, which parametrize subschemes in algebraic varieties, have been extensively studied in algebraic geometry for the last 50 years. The most interesting class of Hilbert schemes are schemes $X^{[ n]}$ of collections of $n$ points (zero-dimensional subschemes) in a smooth algebraic surface $X$. Schemes $X^{[ n]}$ turn out to be closely related to many areas of mathematics, such as algebraic combinatorics, integrable systems, representation theory, and mathematical physics, among others.

This book surveys recent developments of the theory of Hilbert schemes of points on complex surfaces and its interplay with infinite dimensional Lie algebras. It starts with the basics of Hilbert schemes of points and presents in detail an example of Hilbert schemes of points on the projective plane. Then the author turns to the study of cohomology of $X^{[ n]}$, including the construction of the action of infinite dimensional Lie algebras on this cohomology, the ring structure of cohomology, equivariant cohomology of $X^{[ n]}$ and the Gromov-Witten correspondence. The last part of the book presents results about quantum cohomology of $X^{[ n]}$ and related questions.

The book is of interest to graduate students and researchers in algebraic geometry, representation theory, combinatorics, topology, number theory, and theoretical physics.
Preface ix
Part 1 Hilbert schemes of points on surfaces
1(40)
Chapter 1 Basic results on Hilbert schemes of points
3(16)
1.1 Partitions
3(2)
1.2 The ring of symmetric functions
5(2)
1.3 Symmetric products
7(3)
1.4 Hilbert schemes of points
10(7)
1.5 Incidence Hilbert schemes
17(2)
Chapter 2 The nef cone and flip structure of (P2)H
19(22)
2.1 Curves homologous to βn
19(9)
2.2 The nef cone of (P2)N
28(4)
2.3 Curves homologous to (β - (n - 1)/βn
32(3)
2.4 A flip structure on (P2)[ n] when n ≥ 3
35(6)
Part 2 Hilbert schemes and infinite dimensional Lie algebras
41(98)
Chapter 3 Hilbert schemes and infinite dimensional Lie algebras
43(30)
3.1 Affine Lie algebra action of Nakajima
43(3)
3.2 Heisenberg algebras of Nakajima and Grojnowski
46(9)
3.3 Geometric interpretations of Heisenberg monomial classes
55(3)
3.4 The homology classes of curves in Hilbert schemes
58(3)
3.5 Virasoro algebras of Lehn
61(2)
3.6 Higher order derivatives of Heisenberg operators
63(6)
3.7 The Ext vertex operators of Carlsson and Okounkov
69(4)
Chapter 4 Chern character operators
73(26)
4.1 Chern character operators
73(7)
4.2 Chern characters
80(7)
4.3 Characteristic classes of tautological bundles
87(4)
4.4 W algebras and Hilbert schemes
91(8)
Chapter 5 Multiple g-zeta values and Hilbert schemes
99(22)
5.1 Okounkov's conjecture
99(3)
5.2 The series Fα...αNk1...,kn(q)
102(16)
5.3 The reduced series (chL1... chLnKn)'
118(3)
Chapter 6 Lie algebras and incidence Hilbert schemes
121(18)
6.1 Heisenberg algebra actions for incidence Hilbert schemes
121(8)
6.2 A translation operator for incidence Hilbert schemes
129(8)
6.3 Lie algebras and incidence Hilbert schemes
137(2)
Part 3 Cohomology rings of Hilbert schemes of points
139(78)
Chapter 7 The cohomology rings of Hilbert schemes of points on surfaces
141(16)
7.1 Two sets of ring generators for the cohomology
141(5)
7.2 The Hilbert ring
146(3)
7.3 Approach of Lehn-Sorger via graded Frobenius algebras
149(5)
7.4 Approach of Costello-Grojnowski via Calogero-Sutherland operators
154(3)
Chapter 8 Ideals of the cohomology rings of Hilbert schemes
157(18)
8.1 The cohomology ring of the Hilbert scheme (C2)[ n]
157(4)
8.2 Ideals in H*(X[ n]) for a projective surface X
161(3)
8.3 Relation with the cohomology ring of the Hilbert scheme (C2)[ n]
164(2)
8.4 Partial n-independence of structure constants for X projective
166(5)
8.5 Applications to quasi-projective surfaces with the S-property
171(4)
Chapter 9 Integral cohomology of Hilbert schemes
175(28)
9.1 Integral operators
175(5)
9.2 Integral operators involving only divisors in H2(X)
180(4)
9.3 Integrality of mλ,α for integral α
184(1)
9.4 Unimodularity
185(5)
9.5 Integral bases for the cohomology of Hilbert schemes
190(1)
9.6 Comparison of two integral bases of H*((P2)[ n];Z)
191(12)
Chapter 10 The ring structure of H*orb(X[ n])
203(14)
10.1 Generalities
203(2)
10.2 The Heisenberg algebra
205(1)
10.3 The cohomology classes ηn(γ) and Ok(α, n)
206(3)
10.4 Interactions between Heisenberg algebra and Dk(γ)
209(3)
10.5 The ring structure of H*orb(X(n))
212(2)
10.6 The W algebras
214(3)
Part 4 Equivariant cohomology of the Hilbert schemes of points
217(34)
Chapter 11 Equivariant cohomology of Hilbert schemes
219(12)
11.1 Equivariant cohomology rings of Hilbert schemes
219(5)
11.2 Heisenberg algebras in equivariant setting
224(1)
11.3 Equivariant cohomology and Jack polynomials
225(6)
Chapter 12 Hilbert/Gromov-Witten correspondence
231(20)
12.1 A brief introduction to Gromov-Witten theory
232(1)
12.2 The Hilbert/Gromov-Witten correspondence
233(5)
12.3 The N-point functions and the multi-point trace functions
238(3)
12.4 Equivariant intersection and τ-functions of 2-Toda hierarchies
241(3)
12.5 Numerical aspects of Hilbert/Gromov-Witten correspondence
244(3)
12.6 Relation to the Hurwitz numbers of P1
247(4)
Part 5 Gromov-Witten theory of the Hilbert schemes of points
251(74)
Chapter 13 Cosection localization for the Hilbert schemes of points
253(18)
13.1 Cosection localization of Kiem and J. Li
253(4)
13.2 Vanishing of Gromov-Witten invariants when pg(X) > 0
257(4)
13.3 Intersections on some moduli space of genus-1 stable maps
261(4)
13.4 Gromov-Witten invariants of the Hilbert scheme X[ 2]
265(6)
Chapter 14 Equivariant quantum operator of Okounkov-Pandharipande
271(12)
14.1 Equivariant quantum cohomology of the Hilbert scheme (C2)[ n]
271(4)
14.2 Equivalence of four theories
275(3)
14.3 The quantum differential equation of Hilbert schemes of points
278(5)
Chapter 15 The genus-0 extremal Gromov-Witten invariants
283(24)
15.1 1-point genus-0 extremal Gromov-Witten invariants
283(11)
15.2 2-point genus-0 extremal invariants of J. Li and W.-P. Li
294(7)
15.3 The structure of the genus-0 extremal Gromov-Witten invariants
301(6)
Chapter 16 Ruan's Cohomological Crepant Resolution Conjecture
307(18)
16.1 The quantum corrected cohomology ring H*n(X[ n])
308(2)
16.2 The commutator [ k(α), 1(β)]
310(12)
16.3 Ruan's Cohomological Crepant Resolution Conjecture
322(3)
Bibliography 325(10)
Index 335
Zhenbo Qin, University of Missouri, Columbia, MO.