Muutke küpsiste eelistusi

Hochschild Cohomology for Algebras [Kõva köide]

  • Formaat: Hardback, 264 pages, kõrgus x laius: 254x178 mm
  • Sari: Graduate Studies in Mathematics
  • Ilmumisaeg: 01-Nov-2020
  • Kirjastus: American Mathematical Society
  • ISBN-10: 1470449315
  • ISBN-13: 9781470449315
Teised raamatud teemal:
  • Formaat: Hardback, 264 pages, kõrgus x laius: 254x178 mm
  • Sari: Graduate Studies in Mathematics
  • Ilmumisaeg: 01-Nov-2020
  • Kirjastus: American Mathematical Society
  • ISBN-10: 1470449315
  • ISBN-13: 9781470449315
Teised raamatud teemal:
This book gives a thorough and self-contained introduction to the theory of Hochschild cohomology for algebras and includes many examples and exercises. The book then explores Hochschild cohomology as a Gerstenhaber algebra in detail, the notions of smoothness and duality, algebraic deformation theory, infinity structures, support varieties, and connections to Hopf algebra cohomology. Useful homological algebra background is provided in an appendix. The book is designed both as an introduction for advanced graduate students and as a resource for mathematicians who use Hochschild cohomology in their work.
Introduction vii
Chapter 1 Historical Definitions and Basic Properties
1(24)
1.1 Definitions of Hochschild homology and cohomology
1(8)
1.2 Interpretation in low degrees
9(4)
1.3 Cup product
13(3)
1.4 Gerstenhaber bracket
16(4)
1.5 Cap product and shuffle product
20(2)
1.6 Harrison cohomology and Hodge decomposition
22(3)
Chapter 2 Cup Product and Actions
25(20)
2.1 From cocycles to chain maps
25(2)
2.2 Yoneda product
27(5)
2.3 Tensor product of complexes
32(3)
2.4 Yoneda composition and tensor product of extensions
35(3)
2.5 Actions of Hochschild cohomology
38(7)
Chapter 3 Examples
45(34)
3.1 Tensor product of algebras
45(7)
3.2 Twisted tensor product of algebras
52(6)
3.3 Koszul complexes and the HKR Theorem
58(4)
3.4 Koszul algebras
62(8)
3.5 Skew group algebras
70(4)
3.6 Path algebras and monomial algebras
74(5)
Chapter 4 Smooth Algebras and Van den Bergh Duality
79(20)
4.1 Dimension and smoothness
79(4)
4.2 Noncommutative differential forms
83(5)
4.3 Van den Bergh duality and Calabi-Yau algebras
88(3)
4.4 Skew group algebras
91(3)
4.5 Connes differential and Batalin-Vilkovisky structure
94(5)
Chapter 5 Algebraic Deformation Theory
99(18)
5.1 Formal deformations
99(5)
5.2 Infinitesimal deformations and rigidity
104(4)
5.3 Maurer-Cartan equation and Poisson bracket
108(2)
5.4 Graded deformations
110(2)
5.5 Braverman-Gaitsgory theory and the PBW Theorem
112(5)
Chapter 6 Gerstenhaber Bracket
117(24)
6.1 Coderivations
118(3)
6.2 Derivation operators
121(4)
6.3 Homotopy liftings
125(6)
6.4 Differential graded coalgebras
131(5)
6.5 Extensions
136(5)
Chapter 7 Infinity Algebras
141(18)
7.1 Aoo-algebras
141(4)
7.2 Minimal models
145(3)
7.3 Formality and Koszul algebras
148(1)
7.4 Aoo-center
149(3)
7.5 Loo-algebras
152(3)
7.6 Formality and algebraic deformations
155(4)
Chapter 8 Support Varieties for Finite-Dimensional Algebras
159(22)
8.1 Affine varieties
160(2)
8.2 Finiteness properties
162(5)
8.3 Support varieties
167(3)
8.4 Self-injective algebras and realization
170(3)
8.5 Self-injective algebras and indecomposable modules
173(8)
Chapter 9 Hopf Algebras
181(30)
9.1 Hopf algebras and actions on rings
181(4)
9.2 Modules for Hopf algebras
185(5)
9.3 Hopf algebra cohomology and actions
190(6)
9.4 Bimodules and Hochschild cohomology
196(6)
9.5 Finite group algebras
202(3)
9.6 Spectral sequences for Hopf algebras
205(6)
Appendix A Homological Algebra Background
211(24)
A.1 Complexes
211(3)
A.2 Resolutions and dimensions
214(4)
A.3 Ext and Tor
218(3)
A.4 Long exact sequences
221(3)
A.5 Double complexes
224(2)
A.6 Categories, functors, derived functors
226(4)
A.7 Spectral sequences
230(5)
Bibliography 235(12)
Index 247
Sarah J. Witherspoon, Texas A&M University, College Station, TX.