Muutke küpsiste eelistusi

Holomorphic Functions and Integral Representations in Several Complex Variables 1st ed. 1986. Corr. 2nd printing 1998 [Kõva köide]

  • Formaat: Hardback, 392 pages, kõrgus x laius: 234x156 mm, kaal: 1670 g, XX, 392 p., 1 Hardback
  • Sari: Graduate Texts in Mathematics 108
  • Ilmumisaeg: 17-Jun-1986
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 038796259X
  • ISBN-13: 9780387962597
Teised raamatud teemal:
  • Kõva köide
  • Hind: 81,12 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 95,44 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 392 pages, kõrgus x laius: 234x156 mm, kaal: 1670 g, XX, 392 p., 1 Hardback
  • Sari: Graduate Texts in Mathematics 108
  • Ilmumisaeg: 17-Jun-1986
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 038796259X
  • ISBN-13: 9780387962597
Teised raamatud teemal:
The subject of this book is Complex Analysis in Several Variables. This text begins at an elementary level with standard local results, followed by a thorough discussion of the various fundamental concepts of "complex convexity" related to the remarkable extension properties of holomorphic functions in more than one variable. It then continues with a comprehensive introduction to integral representations, and concludes with complete proofs of substantial global results on domains of holomorphy and on strictly pseudoconvex domains inC", including, for example, C. Fefferman's famous Mapping Theorem. The most important new feature of this book is the systematic inclusion of many of the developments of the last 20 years which centered around integral representations and estimates for the Cauchy-Riemann equations. In particu­ lar, integral representations are the principal tool used to develop the global theory, in contrast to many earlier books on the subject which involved methods from commutative algebra and sheaf theory, and/or partial differ­ ential equations. I believe that this approach offers several advantages: (1) it uses the several variable version of tools familiar to the analyst in one complex variable, and therefore helps to bridge the often perceived gap between com­ plex analysis in one and in several variables; (2) it leads quite directly to deep global results without introducing a lot of new machinery; and (3) concrete integral representations lend themselves to estimations, therefore opening the door to applications not accessible by the earlier methods.
Suggestions for the Reader xvii
Interdependence of the
Chapters
xix
Elementary Local Properties of Holomorphic Functions
1(41)
Holomorphic Functions
1(17)
Holomorphic Maps
18(13)
Zero Sets of Holomorphic Functions
31(11)
Notes for
Chapter I
40(2)
Domains of Holomorphy and Pseudoconvexity
42(62)
Elementary Extension Phenomena
43(5)
Natural Boundaries and Pseudoconvexity
48(19)
The Convexity Theory of Cartan and Thullen
67(15)
Plurisubharmonic Functions
82(10)
Characterizations of Pseudoconvexity
92(12)
Notes for
Chapter II
101(3)
Differential Forms and Hermitian Geometry
104(40)
Calculus on Real Differentiable Manifolds
105(17)
Complex Structures
122(9)
Hermitian Geometry in Cn
131(13)
Notes for
Chapter III
143(1)
Integral Representations in Cn
144(49)
The Bochner-Martinelli-Koppelman Formula
145(14)
Some Applications
159(9)
The General Homotopy Formula
168(11)
The Bergman Kernel
179(14)
Notes for
Chapter IV
187(6)
The Levi Problem and the Solution of ∂ on Strictly Pseudoconvex Domains
193(23)
A Parametrix for ∂ on Strictly Pseudoconvex Domains
194(5)
A Solution Operator for ∂
199(7)
The Lipschitz 1/2-Estimate
206(10)
Notes for
Chapter V
214(2)
Function Theory on Domains of Holomorphy in Cn
216(59)
Approximation and Exhaustions
217(10)
∂-Cohomological Characterization of Stein Domains
227(2)
Topological Properties of Stein Domains
229(3)
Meromorphic Functions and the Additive Cousin Problem
232(7)
Holomorphic Functions with Prescribed Zeroes
239(13)
Preview: Cohomology of Coherent Analytic Sheaves
252(23)
Notes for
Chapter VI
272(3)
Topics in Function Theory on Strictly Pseudoconvex Domains
275(83)
A Cauchy Kernel for Strictly Pseudoconvex Domains
276(6)
Uniform Approximation on D
282(3)
The Kernel of Henkin and Ramirez
285(7)
Gleason's Problem and Decomposition in A(D)
292(4)
Lp Estimates for Solutions of ∂
296(9)
Approximation of Holomorphic Functions in Lp Norm
305(4)
Regularity Properties of the Bergman Projection
309(17)
Boundary Regularity of Biholomorphic Maps
326(16)
The Reflection Principle
342(16)
Notes for
Chapter VII
351(7)
Appendix A 358(2)
Appendix B 360(2)
Appendix C 362(3)
Bibliography 365(11)
Glossary of Symbols and Notations 376(5)
Index 381