Muutke küpsiste eelistusi

How Gears Break, v. 18 [Kõva köide]

  • Formaat: Hardback, 221 pages, kõrgus x laius: 250x170 mm, illustrations,
  • Sari: Advances in Boundary Elements
  • Ilmumisaeg: 26-Feb-2004
  • Kirjastus: WIT Press
  • ISBN-10: 1853127396
  • ISBN-13: 9781853127397
Teised raamatud teemal:
  • Formaat: Hardback, 221 pages, kõrgus x laius: 250x170 mm, illustrations,
  • Sari: Advances in Boundary Elements
  • Ilmumisaeg: 26-Feb-2004
  • Kirjastus: WIT Press
  • ISBN-10: 1853127396
  • ISBN-13: 9781853127397
Teised raamatud teemal:
This book presents an in-depth study of the failure mechanisms of gears and describes how simulation models can be developed to complement or replace experimental tests. The authors first introduce the physical processes of failure and explain how to analyse these using fracture mechanics. Much of the following text is devoted to mathematical models and formulations that can be used to predict how cracks behave in gears, together with special techniques developed by the authors. The concluding section describes an expert system devised by them for the design of gear assemblies. References are included at the end of each chapter. "How Gears Break" will be of interest to engineers specialising in damage and fracture mechanics as well as designers of gear assemblies.
Preface ix
Forward xi
Chapter 1 Introduction and overview 1(34)
1.1 Why gears?
1(3)
1.1.1 International standardization and the role of ISO
1(1)
1.1.2 Scope of ISO/TC 60
2(1)
1.1.3 Market environment
2(2)
1.2 Short story of how things break
4(6)
1.2.1 Failure of a perfect solid
5(1)
1.2.2 Failure (cracks) of imperfect/real solids
5(1)
1.2.3 Brittle and ductile materials
6(1)
1.2.4 Crack dynamics
7(1)
1.2.5 How cracks grow
8(1)
1.2.6 From physics to engineering
9(1)
1.3 The origins of fracture mechanics
10(10)
1.3.1 The evaluation of structure design
10(3)
1.3.2 Griffith's theory
13(3)
1.3.3 The origin of fracture mechanics
16(2)
1.3.4 The stress intensity factor
18(2)
1.4 The establishment of fracture mechanics
20(4)
1.4.1 Incubation, initiation, and crack propagation
21(3)
1.5 Nonlinear consideration
24(3)
1.5.1 Simple Crack-Tip Plasticity Models
24(1)
1.5.2 Origins of the COD approach
25(2)
1.5.3 The J-Integral
27(1)
1.6 Status and prospect of fracture mechanics
27(8)
Chapter 2 Fracture Mechanics 35(44)
2.1 Linear elastic fracture mechanics
36(4)
2.1.1 Linear Elastic Crack-Tip Fields
36(1)
2.1.2 The stress intensity factor
37(1)
2.1.3 Energetics of cracked bodies
37(1)
2.1.4 The plastic zone and fracture toughness
38(2)
2.2 Elasto-plastic fracture mechanics
40(3)
2.2.1 Mathematical model of crack propagation
40(3)
2.3 Probabilistic fracture mechanics
43(9)
2.3.1 Calibrated PFM
47(1)
2.3.2 Methodology and application of PFM
48(2)
2.3.3 Engineering models and PFM
50(2)
2.3.4 Probabilistic fracture mechanics and gearing
52(1)
2.4 Numerical methods
52(27)
2.4.1 Finite element method
53(6)
2.4.2 Determination of the stress intensity factors
59(12)
2.4.3 Boundary element method
71(1)
2.4.4 The application of the boundary element method (BEM)
72(7)
Chapter 3 Gear and gear transmission 79(46)
3.1 Short history
79(3)
3.1.1 Greeks
79(2)
3.1.2 Arabs
81(1)
3.2 Gears and standards
82(2)
3.3 Stress intensity factor for gear tooth
84(9)
3.3.1 Shape factor and SIF for gear tooth
84(4)
3.3.2 Stresses in crack plane
88(4)
3.3.3 Shape factor obtained experimentally
92(1)
3.4 Total value of loading
93(18)
3.4.1 Contact area of engaging gears
94(1)
3.4.2 External loading
95(2)
3.4.3 Internal stresses
97(2)
3.4.4 Calculation methods
99(1)
3.4.5 Residual stresses on gears
99(2)
3.4.6 The experimental determinations of Residual Stresses
101(4)
3.4.7 The models for determining Residual Stresses
105(5)
3.4.8 The algorithm for the determination of Residual Stresses
110(1)
3.4.9 The calculation of Residual Stresses by FEM
111(1)
3.5 The comparison of results
111(2)
3.6 Materials for gears
113(1)
3.6.1 Material and Treatment Selection
113(1)
3.7 Mathematical modeling of gear assemblies
114(11)
3.7.1 Optimization of gear assemblies
115(1)
3.7.2 Genetic optimisation algorithm
115(2)
3.7.3 The optimisation procedure
117(2)
3.7.4 Model of the gear assembly design
119(6)
Chapter 4 Crack in the gears tooth root 125(38)
4.1 Mathematical model of crack initiation
126(10)
4.1.1 Evaluation of lifetime for short fatigue crack initiation
126(3)
4.1.2 Stochastic modeling of crack growth
129(5)
4.1.3 Calculation of service life of gearing
134(1)
4.1.4 Example
135(1)
4.2 Remaining life of gear
136(3)
4.2.1 Calculation of service life of gearing
136(3)
4.3 Experimental analysis
139(7)
4.3.1 Test pieces
141(2)
4.3.2 The statistical approach applied to a spur gear pair
143(2)
4.3.3 Analysis of the results
145(1)
4.4 Three dimensional analysis
146(7)
4.4.1 Analysis of the results
153(1)
4.5 Application to automotive gearbox
153(10)
4.5.1 Load on gears
154(1)
4.5.2 Crack propagation in the tooth root
155(8)
Chapter 5 Contact problems on gears 163(40)
5.1 Determination of pitting resistance
164(34)
5.1.1 Fatigue crack initiation
165(1)
5.1.2 Fatigue crack propagation
166(3)
5.1.3 Simulation of contact problems
169(12)
5.1.4 New finite numerical technique for the contact problem
181(9)
5.1.5 Practical application
190(1)
5.1.6 Numerical determination of the pitting resistance
191(3)
5.1.7 Experimental testing
194(4)
5.1.8 Comparison of numerical and experimental results
198(1)
5.2 Concluding remarks
198(5)
Chapter 6 Expert system for gear assemblies 203(12)
6.1 Designing - CAD
203(7)
6.2 Manufacturing - CAM
210(5)
Chapter 7 Concluding remarks 215(4)
7.1 Future consideration
215(4)
Index 219