Muutke küpsiste eelistusi

Hybrid Soft Computing for Image Segmentation Softcover reprint of the original 1st ed. 2016 [Pehme köide]

Edited by , Edited by , Edited by , Edited by
  • Formaat: Paperback / softback, 321 pages, kõrgus x laius: 235x155 mm, kaal: 5153 g, 87 Illustrations, color; 75 Illustrations, black and white; XVI, 321 p. 162 illus., 87 illus. in color., 1 Paperback / softback
  • Ilmumisaeg: 29-Jun-2018
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319836846
  • ISBN-13: 9783319836843
Teised raamatud teemal:
  • Pehme köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 321 pages, kõrgus x laius: 235x155 mm, kaal: 5153 g, 87 Illustrations, color; 75 Illustrations, black and white; XVI, 321 p. 162 illus., 87 illus. in color., 1 Paperback / softback
  • Ilmumisaeg: 29-Jun-2018
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319836846
  • ISBN-13: 9783319836843
Teised raamatud teemal:
This book proposes soft computing techniques for segmenting real-life images in applications such as image processing, image mining, video surveillance, and intelligent transportation systems. The book suggests hybrids deriving from three main approaches: fuzzy systems, primarily used for handling real-life problems that involve uncertainty; artificial neural networks, usually applied for machine cognition, learning, and recognition; and evolutionary computation, mainly used for search, exploration, efficient exploitation of contextual information, and optimization.





The contributed chapters discuss both the strengths and the weaknesses of the approaches, and the book will be valuable for researchers and graduate students in the domains of image processing and computational intelligence.
Hybrid Soft Computing Techniques for Image Segmentation: Fundamentals
and Applications.- Enhanced Rough-Fuzzy C-Means Algorithm for Image
Segmentation.- Intuitionistic Fuzzy C-means Clustering Algorithm for Brain
Image Segmentation.- Automatic Segmentation Approaches.- Modified Level Set
Segmentation.- Fuzzy Deformable Models for 3D Segmentation of Brain
Structures.- Rough Sets for Probabilistic Model Based Image Segmentation.-
Segmentation of Cerebral Images.