Muutke küpsiste eelistusi

Hybrid Vehicles: From Components to System [Mikrofilm]

  • Formaat: Microfilm, illustrations
  • Ilmumisaeg: 16-Jul-2013
  • Kirjastus: Editions Technip
  • ISBN-10: 271080994X
  • ISBN-13: 9782710809944
Teised raamatud teemal:
  • Mikrofilm
  • Hind: 116,82 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Microfilm, illustrations
  • Ilmumisaeg: 16-Jul-2013
  • Kirjastus: Editions Technip
  • ISBN-10: 271080994X
  • ISBN-13: 9782710809944
Teised raamatud teemal:
The fast growth in world population and the associated energy requirements, the announced depletion of fossil fuel resources, the continuing rise in greenhouse gas emissions with the induced climatic changes represent some of the major challenges to be taken up in the coming years and decades. Hybridization, therefore, typically represents a transition technology that significantly improve the energy and environmental performance of current vehicles, without radically changing their use typologies, while opening the way to new propulsion modes for the longer term. It is nevertheless a complex subject requiring a multidisciplinary approach. This book, which is intended to be exhaustive, considers the vehicle, its components, their association, and their control, as well as the global balances determined over the vehicle lifetime. It starts with a general presentation of the various conditions of use of vehicles, to give readers an understanding of the stakes related to the development of hybrid vehicles and the methods used to compare the performance of the various solutions.


Preface v
Acknowledgements vii
List of Authors
xvii
Abbreviations xix
Introduction xxv
Chapitre 1 Vehicle Use
Franck Vangraefschepe
1.1 Modeling Vehicle Use
1(6)
1.1.1 Balance-of-Forces Equation
2(2)
1.1.2 Driving Cycles
4(1)
1.1.3 Energy Balance on Cycle
5(2)
1.2 Comparing 3 Types of Vehicle Use: Urban, Rural Road and Motorway
7(8)
1.2.1 Urban Use Conditions
7(2)
1.2.2 Rural Road Use Conditions
9(2)
1.2.3 Motorway Use Conditions
11(4)
1.3 Use of the Internal Combustion Engine
15(4)
1.3.1 Power Transmission from Engine to Wheel
15(1)
1.3.2 Optimizing the Gearbox Ratio on Driving Cycles
16(2)
1.3.3 Influence of Idle
18(1)
1.4 Effect of Vehicle Parameters on the Energy Balance
19(9)
1.4.1 Effect of Mass
19(2)
1.4.2 Effect of Rolling Losses
21(4)
1.4.3 Effect of Aerodynamics
25(1)
1.4.4 Effect of Auxiliaries
26(2)
1.5 Study of the Normalized European Driving Cycle
28(5)
1.5.1 Definition of the Cycle
28(2)
1.5.2 Effect of the Various Vehicle Parameters on the "Hot" NEDC
30(1)
1.5.2.1 Optimization of the Gearbox Ratio
30(1)
1.5.2.2 Effect of the Vehicle Parameters
30(1)
1.5.2.3 Effect of Cold Start
31(2)
1.6 Energy Recovery During Braking
33(23)
1.6.1 Mass Transfer
34(1)
1.6.2 Braking Distribution Between Axles and Equal Adhesion Parabola
35(2)
1.6.3 Energy Recovery During Braking at Constant Deceleration
37(5)
1.6.4 Energy Recovery in Use
42(1)
1.6.4.1 Definition of Braking Management Strategies
42(11)
1.6.4.2 Estimation of Recoverable Energies under Real Use Conditions
53(3)
1.6.5 Conclusion
56(1)
1.7 Conclusion
56(4)
Chapitre 2 Internal Combustion Engines
Pierre Leduc
2.1 Internal Combustion Engines -- Characteristics and Context
60(15)
2.1.1 Thermodynamic Principles of Internal Combustion Engines
60(1)
2.1.1.1 Types of Engines
60(2)
2.1.1.2 Simplified Chemistry of Combustion
62(1)
2.1.1.3 Power, Load, and Output
63(2)
2.1.2 Evolution of Pollution Standards and CO2 Emissions
65(3)
2.1.3 Fuel
68(1)
2.1.3.1 Traditional Fuels
68(1)
2.1.3.2 Liquefied Petroleum Gas (LPG)
69(1)
2.1.3.3 Compressed Natural Gas (CNG)
70(1)
2.1.3.4 Biofuels
70(1)
2.1.3.5 Hydrogen
71(1)
2.1.3.6 Energy Comparison
72(1)
2.1.3.7 Cost and Taxation of Fuel in France
73(2)
2.2 Spark-Ignition Engines (Gasoline Engines)
75(18)
2.2.1 General
75(1)
2.2.2 The Standard Situation
75(1)
2.2.2.1 The Engine
75(3)
2.2.2.2 Emissions Control and Complete Combustion
78(1)
2.2.2.3 Efficiency Cascade Applied to the Gasoline Engine
79(1)
2.2.3 Technological Advances
80(1)
2.2.3.1 Downsizing
80(4)
2.2.3.2 Variable Valve Timing
84(2)
2.2.3.3 Charge-Diluted Combustion
86(4)
2.2.3.4 Other Refinements
90(1)
2.2.3.5 The Future: Controlled Auto-Ignition Combustion?
90(2)
2.2.4 Summary
92(1)
2.3 Compression Ignition Engines (Diesel Engines)
93(9)
2.3.1 Description of Existing Diesel Engines
93(1)
2.3.1.1 The Engine
94(3)
2.3.1.2 Pollution Control: EGR and Emissions Control System
97(1)
2.3.2 Technological Improvements
98(1)
2.3.2.1 Downsizing and Downspeeding
98(1)
2.3.2.2 Two-Stage Turbocharging
98(1)
2.3.2.3 Low-Pressure EGR
99(1)
2.3.2.4 Advanced Injection Systems
100(1)
2.3.2.5 New Combustion Types for Diesel Engines
101(1)
2.3.3 Summary
102(1)
2.4 Use in the Vehicle
102(11)
2.4.1 Effect of Engine Use on Energy Distribution
102(1)
2.4.1.1 Cold Engine Operation
102(3)
2.4.1.2 Influence of the Engine's Operating Point on Thermal Losses
105(1)
2.4.1.3 The Recovery of Thermal Losses
106(3)
2.4.2 Principal Impact of Hybridization on the Engine
109(1)
2.4.2.1 Advantages
109(1)
2.4.2.2 Limitations
110(1)
2.4.2.3 An Opportunity for 2-Stroke and Rotary Engines?
111(2)
2.5 Summary and Future Outlook
113(4)
Chapitre 3 Electric Drivetrain
El Hadj Miliani
Youssef Touzani
3.1 Overview of Electric Machines
117(5)
3.1.1 Principles
117(1)
3.1.1.1 Electrodynamic Machines
117(1)
3.1.1.2 Variable Reluctance Machines
118(1)
3.1.1.3 Sign Convention
119(1)
3.1.2 Composition
119(1)
3.1.2.1 Electrodynamic Machines
119(1)
3.1.2.2 Variable Reluctance Machines
119(1)
3.1.3 Losses in Electric Machines
120(1)
3.1.4 Electric Machine Operating Ranges
120(2)
3.2 Classification of Electric Machines Used in Automobile Drivetrains
122(18)
3.2.1 Mechanical Commutator DC Machines (MCDCM)
123(1)
3.2.2 Synchronous Machines
124(1)
3.2.2.1 Electronic Commutation DC Machine (ECDCM)
124(1)
3.2.2.2 Wound Rotor Synchronous Machine (WRSM)
125(3)
3.2.2.3 Permanent Magnet Synchronous Machine (PMSM)
128(3)
3.2.2.4 Variable Reluctance Synchronous Machine (VRSM)
131(2)
3.2.3 Asynchronous Machine (ASM)
133(1)
3.2.4 Novel Machines
134(1)
3.2.4.1 Axial Flux Machines
134(2)
3.2.4.2 Wheel Motors
136(2)
3.2.4.3 Double Excitation Machines
138(1)
3.2.4.4 Double Rotor Machines
138(1)
3.2.4.5 Permanent Magnet Reluctance Machines (PRM)
139(1)
3.3 Modeling of Electric Machines
140(6)
3.3.1 Electrical Aspects
141(3)
3.3.2 Thermal Aspects
144(2)
3.4 Power Electronics
146(16)
3.4.1 Power Components
147(1)
3.4.1.1 Diode
148(1)
3.4.1.2 MOSFET
148(1)
3.4.1.3 IGBT
149(1)
3.4.2 Commutation
150(1)
3.4.2.1 Natural Commutation
150(1)
3.4.2.2 Forced Commutation
150(1)
3.4.2.3 Dead Time During Commutation
150(1)
3.4.3 Electrical Conversion Structures
151(1)
3.4.3.1 DC-AC Conversion Structures
151(2)
3.4.3.2 DC-DC Conversion Structures
153(4)
3.4.3.3 AC-DC Conversion Structures
157(1)
3.4.3.4 Example of Implementation in a Vehicle
158(1)
3.4.4 Losses in the Power Converters
159(1)
3.4.5 Modeling the Power Converters
159(1)
3.4.5.1 Topological Model
160(1)
3.4.5.2 Mean Model
161(1)
3.5 Controlling Electric Machines
162(5)
3.5.1 Control
163(1)
3.5.2 Pulse Width Modulation (PWM)
164(1)
3.5.2.1 Principle
164(1)
3.5.2.2 Practical Case of Modulation (Toyota THS II)
165(1)
3.5.3 Angular Position Measurement
166(1)
3.5.3.1 Optical Encoder
166(1)
3.5.3.2 Resolver
167(1)
3.6 Electric Machine and Power Electronics Integration Constraints
167(8)
3.6.1 Integration of the Electric Machine
169(1)
3.6.2 Integration of the Power Electronics
170(1)
3.6.2.1 Control and Sensors
170(1)
3.6.2.2 Power Components
171(3)
3.6.2.3 Thermal Behavior
174(1)
3.7 Perspectives
175(4)
3.7.1 Power Electronics
175(1)
3.7.2 Electric Machines
176(1)
3.7.3 Control
176(3)
Chapitre 4 On-Board Energy Storage Systems
Valerie Sauvant-Moynot
4.1 Storage Requirements
179(1)
4.2 Electrical Storage
180(82)
4.2.1 General
180(1)
4.2.1.1 Electrochemistry
180(3)
4.2.1.2 Operation and Characteristics of a Storage Cell
183(9)
4.2.1.3 Operation and Characteristics of Supercapacitors
192(3)
4.2.2 Lead Storage Cells
195(1)
4.2.2.1 Description [ Robert and Alzieu, 2004b]
195(1)
4.2.2.2 Characteristics
195(2)
4.2.2.3 Aging
197(1)
4.2.2.4 Applications
198(1)
4.2.2.5 Outlook
199(1)
4.2.3 Ni-MH Storage Cells
199(1)
4.2.3.1 Description [ Caillon, 2001]
199(2)
4.2.3.2 Characteristics
201(1)
4.2.3.3 Aging
202(1)
4.2.3.4 Application
203(3)
4.2.3.5 Outlook
206(1)
4.2.4 Lithium Storage Cells
207(1)
4.2.4.1 Description
207(5)
4.2.4.2 Applications
212(4)
4.2.4.3 Outlook
216(1)
4.2.5 Supercapacitors
217(1)
4.2.5.1 Electrostatic Supercapacitors
218(1)
4.2.5.2 Electrochemical Supercapacitors
219(1)
4.2.5.3 Hybrid Supercapacitors
219(1)
4.2.5.4 Summary
219(1)
4.2.6 Comparison of Electrical Energy Storage Technologies
220(1)
4.2.6.1 Characteristics of Energy Storage Systems (ESS) for Different Applications
220(4)
4.2.6.2 Comparison of Energy Efficiency in a Hybrid Vehicle
224(1)
4.2.7 Modeling
225(1)
4.2.7.1 Modeling Batteries
226(13)
4.2.7.2 Modeling Supercapacitors
239(3)
4.2.8 From the Element to the Battery Pack
242(1)
4.2.8.1 Criteria for Selecting a Battery Cell
242(6)
4.2.8.2 Architecture of a Battery Pack
248(4)
4.2.9 Management of Electrochemical Storage Systems
252(1)
4.2.9.1 Battery Management Systems -- BMS
253(2)
4.2.9.2 Methods for Estimating State of Charge
255(5)
4.2.9.3 Methods of Thermal Management
260(2)
4.3 Other on-Board Storage Systems
262(13)
Chapitre 5 Hybridization
Francois Badin
5.1 Principles
275(10)
5.1.1 Missions and Constraints of a Drivetrain
275(2)
5.1.2 Complementarity of Thermal and Alternative Drivetrains
277(2)
5.1.3 Principle of Hybridization
279(2)
5.1.4 Usable Components
281(1)
5.1.5 Series Hybridization
282(1)
5.1.6 Parallel Hybridization
282(1)
5.1.7 Comparison of Series and Parallel Hybridizations
282(2)
5.1.8 Series-Parallel Hybridization
284(1)
5.2 Architectures
285(25)
5.2.1 Coupling Devices
285(1)
5.2.2 Series Hybridization
285(1)
5.2.3 Parallel Hybridization
286(1)
5.2.3.1 Coupling by Addition of Torques
286(3)
5.2.3.2 Coupling by Addition of Speeds
289(1)
5.2.4 Series-Parallel Hybridization
290(3)
5.2.5 Power-Split Hybridization
293(1)
5.2.5.1 Notion of Power Splitting
293(2)
5.2.5.2 Input Split Type Configuration
295(2)
5.2.5.3 Multimode Configurations
297(4)
5.2.5.4 Output Split Type Multimode Configuration
301(4)
5.2.5.5 Multimode Configuration with Discrete Ratios
305(1)
5.2.5.6 Applications
306(1)
5.2.6 Special Architectures
306(1)
5.2.6.1 Electric Drive
306(2)
5.2.6.2 Electric Four-Wheel Drive
308(2)
5.2.6.3 Compressed Air Hybrid
310(1)
5.3 Features
310(33)
5.3.1 Discrete Hybrids
311(1)
5.3.1.1 Optimized Management of Onboard Electrical Energy
311(1)
5.3.1.2 Stop-Start
311(3)
5.3.1.3 Stop-Start with Extended Features
314(4)
5.3.1.4 Engine Assist
318(3)
5.3.1.5 All-Electric Mode
321(2)
5.3.2 Functional Hybrids
323(1)
5.3.2.1 Non-Interruption of Torque when Changing Gear
323(2)
5.3.2.2 All-Electric Mode with Range and Charging on the Grid
325(9)
5.3.2.3 Summary of All-Electric Autonomy and Grid Charging Features
334(3)
5.3.2.4 Expressing the Consumptions of a Plug-in Hybrid Vehicle
337(3)
5.3.2.5 Exchanging Energy with the Grid
340(1)
5.3.2.6 Distributed Drive
340(3)
5.4 Summary
343(5)
5.4.1 Features and Gains
343(1)
5.4.2 Implementation
343(1)
5.4.2.1 Drive
343(3)
5.4.2.2 Vehicles
346(2)
5.5 Examples
348(21)
5.5.1 Parallel Hybrid Transmission
348(4)
5.5.2 Toyota Prius
352(1)
5.5.2.1 History
352(2)
5.5.2.2 Principle and Manufacture
354(1)
5.5.2.3 Evolutions of the Toyota Hybrid System Concept
354(4)
5.5.2.4 Operating Features
358(11)
Chapitre 6 Control of Hybrid Vehicles
Antonio Sciarretta
6.1 The Need for Energy Monitoring and Management
369(5)
6.1.1 Hybrid Architectures and Degrees of Freedom
369(5)
6.1.2 Energy Management Laws
374(1)
6.2 Heuristic Energy Management
374(5)
6.3 Optimal Energy Management
379(9)
6.3.1 Basic Concepts of Optimal Control Applied to Hybrids
379(2)
6.3.2 Optimal Offline Energy Management
381(1)
6.3.2.1 Dynamic Programming
381(1)
6.3.2.2 Pontryagin's Minimum Principle (PMP)
382(2)
6.3.3 Optimal Online Energy Management
384(4)
6.4 Modeling Hybrid Drive Systems for Optimization
388(13)
6.4.1 Forward and Backward Models
388(2)
6.4.2 Backward Models of Hybrid Components
390(1)
6.4.2.1 Vehicle
390(1)
6.4.2.2 Transmission
391(1)
6.4.2.3 "Coupling" Node
391(1)
6.4.2.4 Power Splitter
391(1)
6.4.2.5 Internal Combustion Engine
392(1)
6.4.2.6 Electric Machine
393(1)
6.4.2.7 Battery
393(2)
6.4.3 Forward Models of Hybrid Components
395(6)
6.5 Outlook for a Future' Generation of Hybrid Vehicles
401(4)
6.5.1 Extension of Optimal Control
401(1)
6.5.2 Thermal Management
402(1)
6.5.3 Brake Management
403(1)
6.5.4 Recharge Management for Plug-in Hybrids
404(1)
6.6 Conclusion
405
Chapitre 7 Comparative Study of Hybrid Vehicles: Greenhouse Gas Emissions, Energy Consumption, and Cost
207(262)
Frederique Bouvart
Lionel Thellier
Simon Vinot
7.1 Greenhouse Gas Emissions and Energy Consumption
414(26)
7.1.1 Methodology and General Principles
414(2)
7.1.2 Example of a Discrete Hybrid Vehicle
416(1)
7.1.2.1 Assumptions and Data
416(5)
7.1.2.2 Results
421(3)
7.1.3 Plug-in Hybrid Vehicle
424(1)
7.1.3.1 Assumptions and Data
424(7)
7.1.3.2 Results
431(6)
7.1.4 Comparison of Results for Discrete Hybrid Vehicles and Plug-in Vehicles: Conclusion and Perspectives
437(3)
7.2 Economic Balance of Hybrid Electric Vehicles
440(16)
7.2.1 Factors Included in an Economic Balance of Hybrid Vehicles
440(1)
7.2.2 Items Composing the Vehicle Investment Cost
441(1)
7.2.2.1 Evaluation of Direct Costs
441(1)
7.2.2.2 Evaluation of Indirect Costs
442(1)
7.2.2.3 Summary of the Reference Vehicle Investment Costs
442(1)
7.2.3 Analysis of Hybrid Vehicle Cost Structure
443(1)
7.2.3.1 Internal Combustion Engines
444(1)
7.2.3.2 Electric Drivetrain
444(1)
7.2.3.3 Batteries
445(3)
7.2.3.4 Assembly Costs
448(1)
7.2.3.5 Investment Cost Balance
448(1)
7.2.4 Analysis of Hybrid Vehicle Use Cost Structure
449(1)
7.2.4.1 Maintenance and Insurance Costs
450(1)
7.2.4.2 Energy Prices
450(1)
7.2.5 Evaluation of the Total Cost of Ownership
451(1)
7.2.5.1 Evaluation of the Use Cost
451(4)
7.2.5.2 Extra Cost/Feature Ratio
455(1)
7.3 Sensitive Material Balance for Electrified Vehicles
456(13)
7.3.1 Nickel
456(3)
7.3.2 Lithium
459(3)
7.3.3 Rare Earths
462(7)
Appendix 1 Summary of the Various Drivetrain Electrification Solutions 469(2)
Appendix 2 Equivalence Between Fuel Consumption and CO2 Emissions 471(2)
Appendix 3 Regulation ECE R83 on Measurement of Pollutant Emissions. Regulation ECE R101 on Measurement of Fuel Consumption and CO2 Emissions 473(12)
Appendix 4 Toyota Prius 3 Collaborative Braking System 485(2)
Appendix 5 Power-Split Hybridization. Comparison of the Mechanical Solution with Planetary Gear and the Electrical Solution with Dual Rotor Machine 487(2)
Appendix 6 Evolution of Characteristics for the Various Prius Models 489(2)
Appendix 7 Illustration of All-Electric Mode Phases on a European Test Procedure (Warm Start) Depending on the Initial Battery State of Charge (AMESim IFP Energies Nouvelles Simulations) 491